論文の概要: Improving Transferable Targeted Attacks with Feature Tuning Mixup
- arxiv url: http://arxiv.org/abs/2411.15553v1
- Date: Sat, 23 Nov 2024 13:18:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:10.115216
- Title: Improving Transferable Targeted Attacks with Feature Tuning Mixup
- Title(参考訳): Feature Tuning Mixupによるトランスファー可能なターゲットアタックの改善
- Authors: Kaisheng Liang, Xuelong Dai, Yanjie Li, Dong Wang, Bin Xiao,
- Abstract要約: ディープニューラルネットワークは、異なるモデル間で転送可能な例に脆弱性を示す。
ターゲットの攻撃伝達性を高めるために,FTM(Feature Tuning Mixup)を提案する。
提案手法は,計算コストを低く抑えつつ,最先端の手法よりも大幅に向上する。
- 参考スコア(独自算出の注目度): 12.707753562907534
- License:
- Abstract: Deep neural networks exhibit vulnerability to adversarial examples that can transfer across different models. A particularly challenging problem is developing transferable targeted attacks that can mislead models into predicting specific target classes. While various methods have been proposed to enhance attack transferability, they often incur substantial computational costs while yielding limited improvements. Recent clean feature mixup methods use random clean features to perturb the feature space but lack optimization for disrupting adversarial examples, overlooking the advantages of attack-specific perturbations. In this paper, we propose Feature Tuning Mixup (FTM), a novel method that enhances targeted attack transferability by combining both random and optimized noises in the feature space. FTM introduces learnable feature perturbations and employs an efficient stochastic update strategy for optimization. These learnable perturbations facilitate the generation of more robust adversarial examples with improved transferability. We further demonstrate that attack performance can be enhanced through an ensemble of multiple FTM-perturbed surrogate models. Extensive experiments on the ImageNet-compatible dataset across various models demonstrate that our method achieves significant improvements over state-of-the-art methods while maintaining low computational cost.
- Abstract(参考訳): ディープニューラルネットワークは、異なるモデル間で転送可能な敵の例に対する脆弱性を示す。
特に難しい問題は、モデルを特定のターゲットクラスを予測するために誤解を招く可能性のある、転送可能なターゲットアタックを開発することだ。
攻撃の伝達性を高めるために様々な方法が提案されているが、それらはしばしば大幅な計算コストを発生させながら、限られた改善をもたらす。
最近のクリーンな特徴混成手法では、ランダムなクリーンな特徴を用いて特徴空間を摂動するが、攻撃固有の摂動の利点を見越して、敵の例を乱すための最適化が欠如している。
本稿では、特徴空間におけるランダムノイズと最適化ノイズを組み合わせ、標的攻撃の伝達性を高める新しい手法であるFeature Tuning Mixup (FTM)を提案する。
FTMは学習可能な機能摂動を導入し、最適化のために効率的な確率的更新戦略を採用している。
これらの学習可能な摂動は、伝達性を改善したより堅牢な逆例の生成を促進する。
さらに,複数のFTM摂動サロゲートモデルのアンサンブルにより攻撃性能を向上できることを実証した。
様々なモデルにまたがるImageNet互換データセットの大規模な実験により,提案手法は計算コストを低く抑えつつ,最先端の手法よりも大幅に向上することを示した。
関連論文リスト
- Improving the Transferability of Adversarial Examples by Feature Augmentation [6.600860987969305]
本稿では,計算コストの増大を伴わずに,対向移動性を向上する簡易かつ効果的な機能拡張攻撃法を提案する。
具体的には、攻撃勾配の多様性を増大させるために、モデルの中間特徴にランダムノイズを注入する。
提案手法は,既存の勾配攻撃と組み合わせることで,さらなる性能向上を図ることができる。
論文 参考訳(メタデータ) (2024-07-09T09:41:40Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
GAN(Generative Adversarial Networks)のような逆生成モデルは、様々な種類のデータを生成するために広く応用されている。
本研究では, GE-AdvGAN という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T16:43:16Z) - Towards Transferable Adversarial Attacks with Centralized Perturbation [4.689122927344728]
逆転性により未知のディープニューラルネットワーク(DNN)に対するブラックボックス攻撃が可能に
現行の転送可能な攻撃は、画像全体に対する敵の摂動を引き起こし、結果として過度なノイズが発生し、ソースモデルに過度に適合する。
本稿では,周波数領域における微細な摂動を最適化し,集中的な摂動を生成するトランスファー可能な対向攻撃を提案する。
論文 参考訳(メタデータ) (2023-12-11T08:25:50Z) - Improving Adversarial Transferability by Stable Diffusion [36.97548018603747]
敵対的な例は 良心サンプルに 知覚不能な摂動を導入 予測を欺く
ディープニューラルネットワーク(Deep Neural Network, DNN)は、良性サンプルに知覚不能な摂動を導入し、予測を誤認する敵の例に影響を受けやすい。
本稿では,SDAM(Stable Diffusion Attack Method)と呼ばれる新しい攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-11-18T09:10:07Z) - Introducing Competition to Boost the Transferability of Targeted
Adversarial Examples through Clean Feature Mixup [21.41516849588037]
逆の例は、微妙な入力修正によって誤った予測を引き起こす可能性がある。
ディープニューラルネットワークは敵の例に影響を受けやすいため、微妙な入力修正によって誤った予測を引き起こす可能性がある。
提案手法は,対象とする対向例の転送可能性を高めるため,最適化プロセスに競合を導入することを提案する。
論文 参考訳(メタデータ) (2023-05-24T07:54:44Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Enhancing Targeted Attack Transferability via Diversified Weight Pruning [0.3222802562733786]
悪意のある攻撃者は、画像に人間の知覚できないノイズを与えることによって、標的となる敵の例を生成することができる。
クロスモデル転送可能な敵の例では、モデル情報が攻撃者から秘密にされている場合でも、ニューラルネットワークの脆弱性は残る。
近年の研究では, エンサンブル法の有効性が示されている。
論文 参考訳(メタデータ) (2022-08-18T07:25:48Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Learning to Generate Noise for Multi-Attack Robustness [126.23656251512762]
対人学習は、対人摂動に対する既存の方法の感受性を回避できる手法の1つとして登場した。
安全クリティカルなアプリケーションでは、攻撃者は様々な敵を採用してシステムを騙すことができるため、これらの手法は極端に便利である。
本稿では,複数種類の攻撃に対するモデルの堅牢性を改善するために,ノイズ発生を明示的に学習するメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T10:44:05Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。