論文の概要: Formal Explanations for Neuro-Symbolic AI
- arxiv url: http://arxiv.org/abs/2410.14219v1
- Date: Fri, 18 Oct 2024 07:08:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:06.931412
- Title: Formal Explanations for Neuro-Symbolic AI
- Title(参考訳): ニューロシンボリックAIの形式的説明
- Authors: Sushmita Paul, Jinqiang Yu, Jip J. Dekker, Alexey Ignatiev, Peter J. Stuckey,
- Abstract要約: 本稿では,ニューロシンボリックシステムの決定を説明するための公式なアプローチを提案する。
これはまず、説明が必要な神経情報の個々の部分のサブセットを特定するのに役立つ。
これに続いて、階層的な形式的な説明の簡潔さを促進するために、互いに独立して、これらの個々の神経入力のみを説明する。
- 参考スコア(独自算出の注目度): 28.358183683756028
- License:
- Abstract: Despite the practical success of Artificial Intelligence (AI), current neural AI algorithms face two significant issues. First, the decisions made by neural architectures are often prone to bias and brittleness. Second, when a chain of reasoning is required, neural systems often perform poorly. Neuro-symbolic artificial intelligence is a promising approach that tackles these (and other) weaknesses by combining the power of neural perception and symbolic reasoning. Meanwhile, the success of AI has made it critical to understand its behaviour, leading to the development of explainable artificial intelligence (XAI). While neuro-symbolic AI systems have important advantages over purely neural AI, we still need to explain their actions, which are obscured by the interactions of the neural and symbolic components. To address the issue, this paper proposes a formal approach to explaining the decisions of neuro-symbolic systems. The approach hinges on the use of formal abductive explanations and on solving the neuro-symbolic explainability problem hierarchically. Namely, it first computes a formal explanation for the symbolic component of the system, which serves to identify a subset of the individual parts of neural information that needs to be explained. This is followed by explaining only those individual neural inputs, independently of each other, which facilitates succinctness of hierarchical formal explanations and helps to increase the overall performance of the approach. Experimental results for a few complex reasoning tasks demonstrate practical efficiency of the proposed approach, in comparison to purely neural systems, from the perspective of explanation size, explanation time, training time, model sizes, and the quality of explanations reported.
- Abstract(参考訳): 人工知能(AI)の実践的な成功にもかかわらず、現在のニューラルネットワークアルゴリズムには2つの重大な問題がある。
第一に、ニューラルネットワークによる決定は、しばしばバイアスと脆さをもたらす。
第二に、推論の連鎖が必要な場合、ニューラルネットワークは多くの場合、性能が悪くなります。
ニューロシンボリック人工知能(Neuro-symbolic AI)は、神経知覚とシンボリック推論の力を組み合わせることで、これらの(その他の)弱点に対処する有望なアプローチである。
一方、AIの成功は、その振る舞いを理解することの重要性を増し、説明可能な人工知能(XAI)の開発につながった。
ニューロシンボリックAIシステムは純粋にニューラルAIよりも重要なアドバンテージを持っているが、ニューラルとシンボリックコンポーネントの相互作用によって隠蔽される、その動作を説明する必要がある。
そこで本研究では,ニューロシンボリックシステムの決定を説明するための公式なアプローチを提案する。
このアプローチは、形式的帰納的説明の使用と、神経-記号的説明可能性問題の階層的解決に依拠している。
すなわち、まずシステムの象徴的コンポーネントに関する公式な説明を計算し、説明が必要な神経情報の個々の部分のサブセットを特定するのに役立つ。
これに続いて、階層的な形式的な説明の簡潔さを促進し、アプローチ全体のパフォーマンスを向上させるために、互いに独立して、これらの個々の神経入力のみを説明する。
いくつかの複雑な推論タスクの実験結果は、説明のサイズ、説明時間、トレーニング時間、モデルサイズ、報告された説明の質の観点から、純粋にニューラルネットワークと比較して、提案手法の実用的効率を実証している。
関連論文リスト
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
ニューロシンボリックAIは、解釈可能性、堅牢性、信頼性を高めるニューラルネットワークとシンボリックアプローチを融合して、有望なパラダイムとして出現する。
最近のニューロシンボリックシステムは、推論と認知能力を備えた協調的な人間-AIシナリオにおいて大きな可能性を示している。
まず, ニューロシンボリックAIアルゴリズムを体系的に分類し, 実行時, メモリ, 計算演算子, 疎結合性, システム特性を実験的に評価し, 解析する。
論文 参考訳(メタデータ) (2024-09-20T01:32:14Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning [49.6928533575956]
我々は、神経系1と論理系2の間を仲介するために神経推論を用いる。
強靭なストーリー生成とグラウンドド・インストラクション・フォローリングの結果、このアプローチは神経系世代におけるコヒーレンスと精度を高めることができることを示した。
論文 参考訳(メタデータ) (2021-07-06T17:59:49Z) - Explanatory models in neuroscience: Part 2 -- constraint-based
intelligibility [8.477619837043214]
計算モデリングは神経科学においてますます重要な役割を担い、モデルがどのように説明するかという哲学的な疑問を浮き彫りにしている。
生物学的システムでは、これらの依存関係の多くは自然に「トップダウン」である
NNモデルの構築に使用される最適化手法が,これらの依存関係のいくつかの重要な側面をいかに捉えているかを示す。
論文 参考訳(メタデータ) (2021-04-03T22:14:01Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
AIの信頼、安全性、解釈可能性、説明責任に関する懸念は、影響力のある思想家によって提起された。
多くは、知識表現と推論を深層学習に統合する必要性を認識している。
ニューラル・シンボリック・コンピューティングは、推論と説明可能性を備えた堅牢な学習をニューラルネットワークで組み合わせようとする研究の活発な領域である。
論文 参考訳(メタデータ) (2020-12-10T18:31:38Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
記憶の神経機構は、人工知能における表現の問題と非常に密接な関係を持っている。
脳内のニューロンのネットワークとその情報処理のシミュレーションを行う計算モデルが提案された。
論文 参考訳(メタデータ) (2020-11-27T01:34:08Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。