論文の概要: Critical Questions Generation: Motivation and Challenges
- arxiv url: http://arxiv.org/abs/2410.14335v1
- Date: Fri, 18 Oct 2024 09:46:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:38.596350
- Title: Critical Questions Generation: Motivation and Challenges
- Title(参考訳): 批判的質問生成 - モチベーションと課題
- Authors: Blanca Calvo Figueras, Rodrigo Agerri,
- Abstract要約: 本稿では,議論文を処理し,それによる批判的な質問を生成する新しいタスクを提案する。
議論理論において、CQは、欠落している可能性のある情報を指差して、議論の盲点を埋めるように設計されたツールである。
LLMを用いたCQs生成の研究には,大規模な実験のための参照データセットが必要である。
- 参考スコア(独自算出の注目度): 6.0158981171030685
- License:
- Abstract: The development of Large Language Models (LLMs) has brought impressive performances on mitigation strategies against misinformation, such as counterargument generation. However, LLMs are still seriously hindered by outdated knowledge and by their tendency to generate hallucinated content. In order to circumvent these issues, we propose a new task, namely, Critical Questions Generation, consisting of processing an argumentative text to generate the critical questions (CQs) raised by it. In argumentation theory CQs are tools designed to lay bare the blind spots of an argument by pointing at the information it could be missing. Thus, instead of trying to deploy LLMs to produce knowledgeable and relevant counterarguments, we use them to question arguments, without requiring any external knowledge. Research on CQs Generation using LLMs requires a reference dataset for large scale experimentation. Thus, in this work we investigate two complementary methods to create such a resource: (i) instantiating CQs templates as defined by Walton's argumentation theory and (ii), using LLMs as CQs generators. By doing so, we contribute with a procedure to establish what is a valid CQ and conclude that, while LLMs are reasonable CQ generators, they still have a wide margin for improvement in this task.
- Abstract(参考訳): LLM(Large Language Models)の開発は、偽情報生成などの誤情報に対する緩和戦略に顕著なパフォーマンスをもたらしている。
しかし、LSMはいまだに時代遅れの知識と、幻覚コンテンツを生成する傾向によって深刻な障害を受けています。
これらの問題を回避するため,議論文を処理して批判的質問(CQ)を生成する「批判的質問生成(Critical Questions Generation)」というタスクを提案する。
議論理論において、CQは、欠落している可能性のある情報を指差して、議論の盲点を埋めるように設計されたツールである。
したがって、LEMをデプロイして知識と関連する反論を生成する代わりに、外部の知識を必要とせず、議論に疑問を投げかけるために使用する。
LLMを用いたCQs生成の研究には,大規模な実験のための参照データセットが必要である。
そこで本研究では,このようなリソースを作成するための2つの補完的手法について検討する。
i) ウォルトンの議論理論によって定義されたCQsテンプレートのインスタンス化
(ii)LLMをCQsジェネレータとして使用する。
これにより、有効なCQの確立に寄与し、LCMは妥当なCQジェネレータである一方、このタスクの改善には大きなマージンがある、と結論付けます。
関連論文リスト
- Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - Let's Ask AI About Their Programs: Exploring ChatGPT's Answers To Program Comprehension Questions [2.377308748205625]
我々は,LLMが生成したコードから生成されたQLCに応答する,最先端のLCMの能力について検討する。
この結果から,現在最先端のLCMではプログラム作成やプログラム実行の追跡が可能であるが,初心者プログラマが記録した類似のエラーに容易に対応できることが示唆された。
論文 参考訳(メタデータ) (2024-04-17T20:37:00Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - keqing: knowledge-based question answering is a nature chain-of-thought
mentor of LLM [27.76205400533089]
大規模言語モデル(LLM)は様々な自然言語処理(NLP)タスク、特に質問応答において顕著な性能を示した。
本稿では,知識グラフ上の質問関連構造化情報を取得するために,ChatGPTなどのLLMを支援する新しいフレームワークを提案する。
KBQAデータセットの実験結果から,Keqingは競合性能を達成でき,各質問に答える論理を説明できることがわかった。
論文 参考訳(メタデータ) (2023-12-31T08:39:04Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
実用的で影響力のある応用がいくつかあるので、長文質問応答(LFQA)に焦点を当てる。
本稿では,要約の要約から質問生成手法を提案し,長い文書の要約からフォローアップ質問を生成することで,困難な設定を実現できることを示す。
論文 参考訳(メタデータ) (2023-09-15T07:22:56Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
大規模言語モデル(LLM)は、幅広い自然言語理解と生成タスクにおいて顕著な進歩を遂げている。
本稿では,様々な種類のNLUタスクに対する総合的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-24T06:44:32Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。