論文の概要: Impact of imperfect annotations on CNN training and performance for instance segmentation and classification in digital pathology
- arxiv url: http://arxiv.org/abs/2410.14365v1
- Date: Fri, 18 Oct 2024 10:51:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:12.149437
- Title: Impact of imperfect annotations on CNN training and performance for instance segmentation and classification in digital pathology
- Title(参考訳): デジタル病理学における不完全アノテーションがCNNトレーニングおよび事例分割・分類のパフォーマンスに及ぼす影響
- Authors: Laura Gálvez Jiménez, Christine Decaestecker,
- Abstract要約: 病理組織像における核の検出・分節化・分節化を併用した作業において,ノイズアノテーションが最先端CNNモデルの訓練・性能に与える影響について検討した。
この結果から, モデル性能の過度な適合や維持を回避する上で, 注釈付き小セットの有効利用が有効であることが示唆された。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License:
- Abstract: Segmentation and classification of large numbers of instances, such as cell nuclei, are crucial tasks in digital pathology for accurate diagnosis. However, the availability of high-quality datasets for deep learning methods is often limited due to the complexity of the annotation process. In this work, we investigate the impact of noisy annotations on the training and performance of a state-of-the-art CNN model for the combined task of detecting, segmenting and classifying nuclei in histopathology images. In this context, we investigate the conditions for determining an appropriate number of training epochs to prevent overfitting to annotation noise during training. Our results indicate that the utilisation of a small, correctly annotated validation set is instrumental in avoiding overfitting and maintaining model performance to a large extent. Additionally, our findings underscore the beneficial role of pre-training.
- Abstract(参考訳): 細胞核などの多数の症例の分離と分類は、正確な診断のためのデジタル病理学において重要な課題である。
しかし、ディープラーニング手法のための高品質なデータセットが利用できるのは、アノテーションプロセスの複雑さのため、しばしば制限される。
本研究では, 病理組織像中の核の検出, 分節化, 分節化を併用したタスクに対して, 最新のCNNモデルのトレーニングと性能に及ぼすノイズアノテーションの影響について検討する。
この文脈では、トレーニング中のアノテーションノイズへの過度な適合を防止するために、適切なトレーニングエポック数を決定するための条件について検討する。
この結果から, モデル性能の過度な適合や維持を回避する上で, 注釈付き小セットの有効利用が有効であることが示唆された。
さらに,本研究は,プレトレーニングにおける有意義な役割を浮き彫りにした。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning [3.231698506153459]
教師付き学習法は、十分な量のラベル付きデータを入力した場合に優れた性能を達成する。
このようなラベルは一般的に、非常に時間がかかり、エラーが発生し、製造コストがかかる。
半教師付き学習アプローチはラベル付きデータとラベルなしデータの両方を活用する。
論文 参考訳(メタデータ) (2024-04-02T09:31:06Z) - Tackling the Incomplete Annotation Issue in Universal Lesion Detection
Task By Exploratory Training [10.627977735890191]
複数の臓器の病変を医用画像上で検出することを目的としているため、ユニバーサル病変検出は臨床実践に非常に有用である。
ディープラーニング手法は有望な結果を示しているが、トレーニングには大量の注釈付きデータを必要とする。
そこで,教師の予測と不完全なアノテーションを組み合わせることで,学生の学習を指導する教師学生検出モデルを提案する。
論文 参考訳(メタデータ) (2023-09-23T08:44:07Z) - SegPrompt: Using Segmentation Map as a Better Prompt to Finetune Deep
Models for Kidney Stone Classification [62.403510793388705]
深層学習は、内視鏡画像を用いた腎臓結石分類のための奨励的な結果を生み出している。
注釈付きトレーニングデータの不足は、トレーニングされたモデルの性能と一般化能力を改善する上で深刻な問題を引き起こす。
本稿では,セグメンテーションマップを2つの側面から活用することにより,データ不足問題を軽減するためにSegPromptを提案する。
論文 参考訳(メタデータ) (2023-03-15T01:30:48Z) - Clinically Acceptable Segmentation of Organs at Risk in Cervical Cancer
Radiation Treatment from Clinically Available Annotations [0.0]
子宮頸癌放射線治療におけるOAR(Organs at Risk)の自動セグメンテーションのためのディープラーニングモデルを学習するためのアプローチを提案する。
我々は、データの不均一性、ラベルノイズ、アノテーションの欠如を最小限に抑えるために、自動データのクリーニングにシンプルな手法を採用している。
そこで本研究では,教師が指導するシステム,アノテーション命令,不確実性誘導学習を利用して,アノテーションの欠如の有無を学習する半教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-02-21T13:24:40Z) - Paced-Curriculum Distillation with Prediction and Label Uncertainty for
Image Segmentation [25.20877071896899]
カリキュラム学習では、まず簡単なサンプルをトレーニングし、徐々に困難を増すことが考えられている。
自己ペースト学習では、ペアリング関数はトレーニングの進捗に適応する速度を定義する。
医用画像セグメンテーションのための新しいペースドキュリキュラム蒸留法(PCD)を開発した。
論文 参考訳(メタデータ) (2023-02-02T12:24:14Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - NINEPINS: Nuclei Instance Segmentation with Point Annotations [2.19221864553448]
本稿では,ポイントアノテーションから自動生成される擬似ラベルセグメンテーションを用いたサンプルセグメンテーションのアルゴリズムを提案する。
生成されたセグメンテーションマスクを用いて、提案手法は、インスタンスセグメンテーションを実現するために、HoVer-Netモデルの修正版を訓練する。
実験結果から,提案手法はポイントアノテーションの不正確性に対して頑健であり,完全注釈付きインスタンスマスクを用いたHover-Netと比較すると,セグメンテーション性能の劣化が必ずしも組織分類などの高次タスクの劣化を意味するとは限らないことが示唆された。
論文 参考訳(メタデータ) (2020-06-24T08:28:52Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
本稿では,情報的サンプルを効果的に選択するための,不確実性と分散性を考慮した新しい能動的学習手法である信頼コアセットを提案する。
2つの医用画像解析タスクの比較実験により,本手法が他の活動的学習方法より優れていることを示す。
論文 参考訳(メタデータ) (2020-04-05T13:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。