論文の概要: A Cascading Cooperative Multi-agent Framework for On-ramp Merging Control Integrating Large Language Models
- arxiv url: http://arxiv.org/abs/2503.08199v1
- Date: Tue, 11 Mar 2025 09:08:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:46:17.643085
- Title: A Cascading Cooperative Multi-agent Framework for On-ramp Merging Control Integrating Large Language Models
- Title(参考訳): 大規模言語モデルを統合したオンラインマージ制御のためのカスケーディング協調型マルチエージェントフレームワーク
- Authors: Miao Zhang, Zhenlong Fang, Tianyi Wang, Qian Zhang, Shuai Lu, Junfeng Jiao, Tianyu Shi,
- Abstract要約: 本稿では,Cascading Cooperative Multi-agent (CCMA) フレームワークを導入し,個別のインタラクションに RL を統合すること,地域協力に微調整のLarge Language Model (LLM) を導入すること,グローバル最適化に報奨関数を導入すること,複雑な運転シナリオをまたいだ意思決定を動的に最適化するRetrieval-augmented Generation メカニズムを提案する。
実験の結果、CCMAは既存のRL法よりも優れており、複雑な運転環境下でのマイクロレベルとマクロレベルの両方のパフォーマンスが大幅に向上していることがわかった。
- 参考スコア(独自算出の注目度): 26.459779380808587
- License:
- Abstract: Traditional Reinforcement Learning (RL) suffers from replicating human-like behaviors, generalizing effectively in multi-agent scenarios, and overcoming inherent interpretability issues.These tasks are compounded when deep environment understanding, agent coordination and dynamic optimization are required. While Large Language Model (LLM) enhanced methods have shown promise in generalization and interoperability, they often neglect necessary multi-agent coordination. Therefore, we introduce the Cascading Cooperative Multi-agent (CCMA) framework, integrating RL for individual interactions, a fine-tuned LLM for regional cooperation, a reward function for global optimization, and the Retrieval-augmented Generation mechanism to dynamically optimize decision-making across complex driving scenarios. Our experiments demonstrate that the CCMA outperforms existing RL methods, demonstrating significant improvements in both micro and macro-level performance in complex driving environments.
- Abstract(参考訳): 従来の強化学習(RL)は、人間のような行動を複製し、マルチエージェントシナリオで効果的に一般化し、固有の解釈可能性問題の克服に苦しむ。
LLM(Large Language Model)拡張メソッドは、一般化と相互運用性の約束を示す一方で、必要なマルチエージェント調整を無視することが多い。
そこで,我々はCascading Cooperative Multi-agent (CCMA) フレームワークを導入し,個別のインタラクションにRLを統合すること,地域協力に微調整のLLM,グローバル最適化のための報酬関数,複雑な運転シナリオ間の意思決定を動的に最適化するRetrieval-augmented Generation メカニズムを紹介した。
実験の結果、CCMAは既存のRL法よりも優れており、複雑な運転環境下でのマイクロレベルとマクロレベルの両方のパフォーマンスが大幅に向上していることがわかった。
関連論文リスト
- Enhancing Language Multi-Agent Learning with Multi-Agent Credit Re-Assignment for Interactive Environment Generalization [37.37641889714614]
我々は,新しいマルチエージェントクレジット再割り当て戦略を備えたマルチエージェント強化学習フレームワークであるCollabUIAgentsを提案する。
我々は,マルチエージェントシステムの性能と環境横断の一般化性を両立させることを実証した。
論文 参考訳(メタデータ) (2025-02-20T12:26:15Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT(Multi-Agent LLM Training)は、推論プロセスを生成、検証、改善ステップに分割する、新しいポストトレーニング戦略である。
MATH、GSM8K、CSQAでは、MALTは、それぞれ15.66%、7.42%、9.40%の相対的な改善で同じベースラインLLMを上回っている。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - CoMAL: Collaborative Multi-Agent Large Language Models for Mixed-Autonomy Traffic [11.682456863110767]
CoMALは、交通の流れを最適化するために、自動運転車間のコラボレーションによって、混在する自律交通問題に対処するために設計されたフレームワークである。
CoMALは大きな言語モデル上に構築されており、対話的な交通シミュレーション環境で動作する。
論文 参考訳(メタデータ) (2024-10-18T10:53:44Z) - Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization [17.392822956504848]
マルチエージェントタスクのための高品質なソリューションを効率的に構築するための強化学習フレームワークを提案する。
PARCOは,(1)並列ソリューション構築において効果的なエージェント協調を可能にするトランスフォーマーベースの通信層,(2)低レイテンシ,並列エージェント決定のためのマルチポインタ機構,(3)優先度ベースのコンフリクトハンドラの3つの重要なコンポーネントを統合する。
提案手法が最先端の学習手法より優れているマルチエージェント車両ルーティングおよびスケジューリング問題においてPARCOを評価し,強力な一般化能力と計算効率を示す。
論文 参考訳(メタデータ) (2024-09-05T17:49:18Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
深層強化学習(DRL)はエージェントと環境の相互作用を通じて多エージェント協調に有望なアプローチを提供する。
従来のDRLソリューションは、ポリシー探索中に連続的なアクション空間を持つ複数のエージェントの高次元に悩まされる。
効率的な政策探索のための高レベル意思決定と低レベル個別制御を用いた階層型強化学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-25T19:09:29Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
多エージェント強化学習はしばしば、多数のエージェントによって引き起こされる指数関数的に大きな作用空間に悩まされる。
完全協調型マルチエージェント問題に対する階層的強化学習に基づく新しい値分解フレームワークHAVENを提案する。
論文 参考訳(メタデータ) (2021-10-14T10:43:47Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
協調型マルチエージェント強化学習(MARL)は,エージェント数で指数関数的に大きい状態空間と動作空間により,スケーラビリティの問題に直面する。
本稿では,学習分散実行パラダイムに局所報酬を組み込んだ,新しい価値に基づくマルチエージェントアルゴリズム LOMAQ を提案する。
論文 参考訳(メタデータ) (2021-09-22T10:08:15Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。