論文の概要: Generative AI, Pragmatics, and Authenticity in Second Language Learning
- arxiv url: http://arxiv.org/abs/2410.14395v1
- Date: Fri, 18 Oct 2024 11:58:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:34.830131
- Title: Generative AI, Pragmatics, and Authenticity in Second Language Learning
- Title(参考訳): 第二言語学習における生成AI, プラグマティクス, 認証性
- Authors: Robert Godwin-Jones`,
- Abstract要約: 生成的AI(Artificial Intelligence)を言語学習と教育に統合する上で、明らかなメリットがある。
しかし、AIシステムが人間の言語に耐える方法のため、人間と同じ社会的認識を持つ言語を使えるような、生きた経験が欠けている。
言語や文化のバイアスは、そのトレーニングデータに基づいて構築されており、主に英語であり、主に西洋の情報源から来ている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: There are obvious benefits to integrating generative AI (artificial intelligence) into language learning and teaching. Those include using AI as a language tutor, creating learning materials, or assessing learner output. However, due to how AI systems under-stand human language, based on a mathematical model using statistical probability, they lack the lived experience to be able to use language with the same social aware-ness as humans. Additionally, there are built-in linguistic and cultural biases based on their training data which is mostly in English and predominantly from Western sources. Those facts limit AI suitability for some language learning interactions. Stud-ies have clearly shown that systems such as ChatGPT often do not produce language that is pragmatically appropriate. The lack of linguistic and cultural authenticity has important implications for how AI is integrated into second language acquisition as well as in instruction targeting development of intercultural communication compe-tence.
- Abstract(参考訳): 生成的AI(Artificial Intelligence)を言語学習と教育に統合する上で、明らかなメリットがある。
その中には、言語家庭教師としてのAIの使用、学習材料の作成、学習者のアウトプットの評価などが含まれる。
しかし、統計確率を用いた数学的モデルに基づいて、AIシステムが人間の言語を理解する方法により、人間と同じ社会的意識を持つ言語を使えるような生きた経験が欠如している。
さらに、そのトレーニングデータに基づく言語や文化のバイアスが組み込まれており、主に英語であり、主に西洋の情報源から来ている。
これらの事実は、いくつかの言語学習インタラクションに対するAIの適合性を制限している。
Stud-ieは、ChatGPTのようなシステムでは、現実的に適切な言語を生成できないことを明らかに示している。
言語的・文化的信頼性の欠如は、AIが第2言語習得にどのように統合されるか、および文化間コミュニケーション・コンプ・テンスの開発を目標とする教育において重要な意味を持つ。
関連論文リスト
- Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - Policy Learning with a Language Bottleneck [65.99843627646018]
PLLBB(Policy Learning with a Language Bottleneck)は、AIエージェントが言語規則を生成するためのフレームワークである。
PLLBBは、言語モデルによってガイドされるルール生成ステップと、エージェントがルールによってガイドされる新しいポリシーを学ぶ更新ステップとを交互に使用する。
2人のプレイヤーによるコミュニケーションゲーム、迷路解決タスク、および2つの画像再構成タスクにおいて、PLLBBエージェントはより解釈可能で一般化可能な振る舞いを学習できるだけでなく、学習したルールを人間のユーザと共有できることを示す。
論文 参考訳(メタデータ) (2024-05-07T08:40:21Z) - Distributed agency in second language learning and teaching through generative AI [0.0]
ChatGPTは、テキストまたは音声形式のチャットを通じて非公式な第二言語プラクティスを提供することができる。
インストラクタはAIを使って、さまざまなメディアで学習と評価材料を構築することができる。
論文 参考訳(メタデータ) (2024-03-29T14:55:40Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Critical Appraisal of Artificial Intelligence-Mediated Communication [0.0]
この本は、言語教育におけるAIによるコミュニケーションの長所と短所について考察する。
言語教師がCALLの教師教育と専門的開発に従事して、進化を続けるテクノロジーの展望に追随し、その教育効果を向上させることが不可欠である、と論じている。
論文 参考訳(メタデータ) (2023-05-15T02:35:40Z) - What Artificial Neural Networks Can Tell Us About Human Language
Acquisition [47.761188531404066]
自然言語処理のための機械学習の急速な進歩は、人間がどのように言語を学ぶかについての議論を変革する可能性がある。
計算モデルによる学習可能性の関連性を高めるためには,人間に対して大きな優位性を持たず,モデル学習者を訓練する必要がある。
論文 参考訳(メタデータ) (2022-08-17T00:12:37Z) - Human Heuristics for AI-Generated Language Are Flawed [8.465228064780744]
我々は,最も個人的かつ連続的な言語である動詞の自己表現が,AIによって生成されたかを検討した。
我々は,これらの単語がAI生成言語の人間の判断を予測可能で操作可能であることを実験的に実証した。
我々は、AIアクセントのようなソリューションについて議論し、AIによって生成された言語の誤認の可能性を減らす。
論文 参考訳(メタデータ) (2022-06-15T03:18:56Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
大規模な言語モデルは、世界に関する豊富な意味知識を符号化することができる。
このような知識は、自然言語で表現された高レベルで時間的に拡張された命令を動作させようとするロボットにとって極めて有用である。
低レベルのスキルを大規模言語モデルと組み合わせることで,言語モデルが複雑かつ時間的に拡張された命令を実行する手順について高いレベルの知識を提供することを示す。
論文 参考訳(メタデータ) (2022-04-04T17:57:11Z) - Words of Wisdom: Representational Harms in Learning From AI
Communication [9.998078491879143]
すべてのAIコミュニケーションを含むすべての言語は、言語の作成に貢献した人間や人間のアイデンティティに関する情報を符号化している、と私たちは主張する。
しかし、AI通信では、ユーザはソースにマッチしないID情報をインデックスすることができる。
これは、ある文化集団に関連する言語が「標準」または「中立」として提示される場合、表現上の害をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-11-16T15:59:49Z) - Systematic Review for AI-based Language Learning Tools [0.0]
このレビューは、2017年から2020年にかけて開発されたAIツールに関する情報を合成した。
これらのツールの大部分は、機械学習と自然言語処理を利用している。
これらのツールを使用した後、学習者は言語能力と知識の向上を実演した。
論文 参考訳(メタデータ) (2021-10-29T11:54:51Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Textシステムは、機械学習を利用した構造化データに基づいてテキスト出力を生成する。
GenNI (Generation Negotiation Interface) は、対話型ビジュアルシステムである。
論文 参考訳(メタデータ) (2021-10-19T18:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。