論文の概要: Enhancing Cryptocurrency Market Forecasting: Advanced Machine Learning Techniques and Industrial Engineering Contributions
- arxiv url: http://arxiv.org/abs/2410.14475v1
- Date: Fri, 18 Oct 2024 14:00:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:43.145916
- Title: Enhancing Cryptocurrency Market Forecasting: Advanced Machine Learning Techniques and Industrial Engineering Contributions
- Title(参考訳): 暗号通貨市場予測の強化:高度な機械学習技術と産業工学的貢献
- Authors: Jannatun Nayeem Pinky, Ramya Akula,
- Abstract要約: この章は、2014年から2024年までの暗号通貨価格予測に適用された機械学習(ML)テクニックを包括的にレビューする。
線形モデルやツリーベースアプローチ,高度なディープラーニングアーキテクチャなど,さまざまなMLアルゴリズムについて検討する。
また、価格変動を予想する市場感情の把握における感情分析の役割についても検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Cryptocurrencies, as decentralized digital assets, have experienced rapid growth and adoption, with over 23,000 cryptocurrencies and a market capitalization nearing \$1.1 trillion (about \$3,400 per person in the US) as of 2023. This dynamic market presents significant opportunities and risks, highlighting the need for accurate price prediction models to manage volatility. This chapter comprehensively reviews machine learning (ML) techniques applied to cryptocurrency price prediction from 2014 to 2024. We explore various ML algorithms, including linear models, tree-based approaches, and advanced deep learning architectures such as transformers and large language models. Additionally, we examine the role of sentiment analysis in capturing market sentiment from textual data like social media posts and news articles to anticipate price fluctuations. With expertise in optimizing complex systems and processes, industrial engineers are pivotal in enhancing these models. They contribute by applying principles of process optimization, efficiency, and risk mitigation to improve computational performance and data management. This chapter highlights the evolving landscape of cryptocurrency price prediction, the integration of emerging technologies, and the significant role of industrial engineers in refining predictive models. By addressing current limitations and exploring future research directions, this chapter aims to advance the development of more accurate and robust prediction systems, supporting better-informed investment decisions and more stable market behavior.
- Abstract(参考訳): 分散型デジタル資産としての暗号通貨は、2023年時点で23,000以上の暗号通貨と1兆ドル(1人あたり約3,400ドル)近い市場資本を持つ急速な成長と普及を経験した。
このダイナミック市場は大きな機会とリスクを示し、ボラティリティを管理するための正確な価格予測モデルの必要性を強調している。
この章は、2014年から2024年までの暗号通貨価格予測に適用された機械学習(ML)テクニックを包括的にレビューする。
線形モデルやツリーベースアプローチ,トランスフォーマーや大規模言語モデルといった高度なディープラーニングアーキテクチャなど,さまざまなMLアルゴリズムについて検討する。
さらに、ソーシャルメディア投稿やニュース記事などのテキストデータから市場感情を抽出し、価格変動を予想する上で、感情分析が果たす役割について検討する。
複雑なシステムやプロセスの最適化に関する専門知識により、産業エンジニアはこれらのモデルを強化する上で重要な役割を担っている。
それらは、計算性能とデータ管理を改善するために、プロセス最適化、効率性、リスク軽減の原則を適用することで貢献する。
この章では、暗号通貨価格予測の進化する状況、新興技術の統合、予測モデルの改良における産業エンジニアの役割を強調します。
本章は、現在の限界に対処し、今後の研究方向性を探ることにより、より正確で堅牢な予測システムの開発を推進し、より良いインフォームド投資決定とより安定した市場行動を支援することを目的とする。
関連論文リスト
- Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
論文 参考訳(メタデータ) (2024-10-09T14:29:50Z) - Multi-Source Hard and Soft Information Fusion Approach for Accurate Cryptocurrency Price Movement Prediction [5.885853464728419]
本稿では,暗号通貨価格変動予測の精度を高めるために,HSIF(ハード・アンド・ソフト・インフォメーション・フュージョン)と呼ばれる新しい手法を導入する。
我々のモデルは価格変動を予測するのに約96.8%の精度がある。
情報の導入により,社会的感情が価格変動に与える影響を把握することができる。
論文 参考訳(メタデータ) (2024-09-27T16:32:57Z) - Cryptocurrency Price Forecasting Using XGBoost Regressor and Technical Indicators [2.038893829552158]
本研究では,暗号通貨の価格を予測するための機械学習手法を提案する。
我々は、XGBoost回帰モデルの訓練および供給のために、EMA(Exponential moving Avergence)やMACD( moving Avergence Divergence)といった重要な技術指標を活用している。
モデルの性能を様々なシミュレーションにより評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2024-07-16T14:41:27Z) - DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting [3.8965079384103865]
本稿では,マルチモーダル時系列データを用いた暗号通貨のトレンド予測のための新しいデュアルアテンションメカニズム(DAM)を提案する。
われわれのアプローチは、重要な暗号通貨メトリクスと、CryptoBERTを通じて分析されたニュースやソーシャルメディアからの感情データを統合する。
本手法は,分散システム,自然言語処理,財務予測といった要素を組み合わせることで,LSTMやTransformerといった従来のモデルよりも最大20%高い精度で性能を向上する。
論文 参考訳(メタデータ) (2024-05-01T13:58:01Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Financial Markets Prediction with Deep Learning [11.26482563151052]
金融市場の動きを予測する新しい1次元畳み込みニューラルネットワーク(CNN)モデルを提案する。
カスタマイズされた1次元畳み込み層は、時間を通じて金融取引データをスキャンし、価格やボリュームなどの異なる種類のデータ、共有パラメータ(カーネル)を互いに共有する。
我々のモデルは従来の技術指標の代わりに自動的に特徴を抽出する。
論文 参考訳(メタデータ) (2021-04-05T19:36:48Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。