CaTs and DAGs: Integrating Directed Acyclic Graphs with Transformers and Fully-Connected Neural Networks for Causally Constrained Predictions
- URL: http://arxiv.org/abs/2410.14485v3
- Date: Mon, 28 Oct 2024 12:35:26 GMT
- Title: CaTs and DAGs: Integrating Directed Acyclic Graphs with Transformers and Fully-Connected Neural Networks for Causally Constrained Predictions
- Authors: Matthew J. Vowels, Mathieu Rochat, Sina Akbari,
- Abstract summary: We introduce Causal Fully-Connected Neural Networks (CFCNs) and Causal Transformers (CaTs)
CFCNs andCaTs operate under predefined causal constraints, as specified by a Directed Acyclic Graph (DAG)
These models retain the powerful function approximation abilities of traditional neural networks while adhering to the underlying structural constraints.
- Score: 6.745494093127968
- License:
- Abstract: Artificial Neural Networks (ANNs), including fully-connected networks and transformers, are highly flexible and powerful function approximators, widely applied in fields like computer vision and natural language processing. However, their inability to inherently respect causal structures can limit their robustness, making them vulnerable to covariate shift and difficult to interpret/explain. This poses significant challenges for their reliability in real-world applications. In this paper, we introduce Causal Fully-Connected Neural Networks (CFCNs) and Causal Transformers (CaTs), two general model families designed to operate under predefined causal constraints, as specified by a Directed Acyclic Graph (DAG). These models retain the powerful function approximation abilities of traditional neural networks while adhering to the underlying structural constraints, improving robustness, reliability, and interpretability at inference time. This approach opens new avenues for deploying neural networks in more demanding, real-world scenarios where robustness and explainability is critical.
Related papers
- Beyond Pruning Criteria: The Dominant Role of Fine-Tuning and Adaptive Ratios in Neural Network Robustness [7.742297876120561]
Deep neural networks (DNNs) excel in tasks like image recognition and natural language processing.
Traditional pruning methods compromise the network's ability to withstand subtle perturbations.
This paper challenges the conventional emphasis on weight importance scoring as the primary determinant of a pruned network's performance.
arXiv Detail & Related papers (2024-10-19T18:35:52Z) - Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
We introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics.
Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%.
arXiv Detail & Related papers (2024-08-19T09:20:31Z) - Equivariant Matrix Function Neural Networks [1.8717045355288808]
We introduce Matrix Function Neural Networks (MFNs), a novel architecture that parameterizes non-local interactions through analytic matrix equivariant functions.
MFNs is able to capture intricate non-local interactions in quantum systems, paving the way to new state-of-the-art force fields.
arXiv Detail & Related papers (2023-10-16T14:17:00Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
This thesis focuses on the problem of training neural networks which are compact, easy to train, reliable and robust to adversarial examples.
We leverage the properties of structured matrices from the Toeplitz family to build compact and secure neural networks.
arXiv Detail & Related papers (2021-09-02T13:58:12Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.