論文の概要: Do LLMs "know" internally when they follow instructions?
- arxiv url: http://arxiv.org/abs/2410.14516v5
- Date: Fri, 28 Mar 2025 15:40:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:06:05.750886
- Title: Do LLMs "know" internally when they follow instructions?
- Title(参考訳): LLMは命令に従うとき、内部で"知識"を持つか?
- Authors: Juyeon Heo, Christina Heinze-Deml, Oussama Elachqar, Kwan Ho Ryan Chan, Shirley Ren, Udhay Nallasamy, Andy Miller, Jaya Narain,
- Abstract要約: 大規模言語モデル (LLM) が命令追従の成功と相関する表現に情報をエンコードするかどうかを検討する。
本分析では,入力埋め込み空間の方向を指示追従次元と呼び,応答が与えられた命令に適合するかどうかを予測する。
この次元に沿った表現の修正は、ランダムな変化に比べて、命令追従の成功率を改善することを実証する。
- 参考スコア(独自算出の注目度): 7.87370534634794
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs' internal states relate to these outcomes is required. In this work, we investigate whether LLMs encode information in their representations that correlate with instruction-following success - a property we term knowing internally. Our analysis identifies a direction in the input embedding space, termed the instruction-following dimension, that predicts whether a response will comply with a given instruction. We find that this dimension generalizes well across unseen tasks but not across unseen instruction types. We demonstrate that modifying representations along this dimension improves instruction-following success rates compared to random changes, without compromising response quality. Further investigation reveals that this dimension is more closely related to the phrasing of prompts rather than the inherent difficulty of the task or instructions. This work provides insight into the internal workings of LLMs' instruction-following, paving the way for reliable LLM agents.
- Abstract(参考訳): 命令追従は、大きな言語モデル(LLM)でAIエージェントを構築するために不可欠である。
しかし、LSMは単純で明確な命令に従わないことが多い。
命令追従動作を改善し、望ましくない出力を防止するためには、LSMの内部状態がこれらの結果とどのように関連しているかをより深く理解する必要がある。
本研究では,LLMが命令追従の成功と相関する表現に情報をエンコードするかどうかを検討する。
本分析では,入力埋め込み空間の方向を指示追従次元と呼び,応答が与えられた命令に適合するかどうかを予測する。
この次元は、目に見えないタスクにまたがるが、目に見えない命令タイプにまたがるものではない。
この次元に沿った表現の修正は、応答品質を損なうことなく、ランダムな変化に比べて、命令追従の成功率を改善することを実証する。
さらなる調査により、この次元はタスクや指示の固有の困難さよりも、プロンプトの表現とより密接に関連していることが明らかになった。
この研究は、LLMの内部動作に関する洞察を与え、信頼性の高いLLMエージェントへの道を開いた。
関連論文リスト
- Robustness via Referencing: Defending against Prompt Injection Attacks by Referencing the Executed Instruction [68.6543680065379]
大型言語モデル(LLM)はインジェクション攻撃に弱い。
本研究では,LLMの命令追従能力を抑えるのではなく,新たな防御手法を提案する。
論文 参考訳(メタデータ) (2025-04-29T07:13:53Z) - Interpreting and Steering LLMs with Mutual Information-based Explanations on Sparse Autoencoders [29.356200147371275]
大きな言語モデル(LLM)は人間のクエリを扱うのに優れていますが、時に欠陥や予期せぬ応答を生成することができます。
特徴解釈と相互情報に基づく目的設計のための固定語彙集合を提案する。
そこで本研究では,学習した機能アクティベーションを,対応する説明に基づいて調整する2つの実行時ステアリング戦略を提案する。
論文 参考訳(メタデータ) (2025-02-21T16:36:42Z) - Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVAは、幻覚を減らすための学習知識とよく一致した高品質なデータを特定するために設計されたフレームワークである。
内部整合性探索(ICP)とセマンティック等価同定(SEI)が含まれており、LLMが命令データとどれだけ親しみやすいかを測定する。
選択したサンプルの品質を確保するため,親しみ以上の特性を考慮した専門家による報酬モデルを導入する。
論文 参考訳(メタデータ) (2025-02-11T08:05:56Z) - LLMs can be easily Confused by Instructional Distractions [16.060402139507644]
大規模言語モデルは、タスクに続く命令において例外的なスキルを示す。
この強度は、モデルが特定の命令を無視しなければならない場合に脆弱性になる可能性がある。
DIM-Benchと呼ばれる新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2025-02-05T04:52:57Z) - LLM-Generated Black-box Explanations Can Be Adversarially Helpful [16.49758711633611]
大規模言語モデル(LLM)は,デジタルアシスタントとして機能することで,複雑な問題の解決と理解を支援する。
私たちの研究は、このアプローチに結びついている隠れたリスクを明らかにします。
LLMの説明が間違った答えを正しく見せると、これは起こります。
論文 参考訳(メタデータ) (2024-05-10T20:23:46Z) - FLAME: Factuality-Aware Alignment for Large Language Models [86.76336610282401]
従来のアライメントプロセスでは,大規模言語モデル(LLM)の事実精度が向上しない。
両段階の幻覚につながる要因は,教師付き微調整(SFT)と強化学習(RL)である。
直接選好最適化により,事実認識型SFTと事実認識型RLで構成された事実認識型アライメントを提案する。
論文 参考訳(メタデータ) (2024-05-02T17:54:54Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
大規模言語モデル(LLM)は、特定の知識を持っていないことを知るのが困難であることが判明した。
Retrieval Augmentation (RA)はLLMの幻覚を緩和するために広く研究されている。
本稿では,LLMの知識境界に対する認識を高めるためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T04:57:19Z) - Why and When LLM-Based Assistants Can Go Wrong: Investigating the
Effectiveness of Prompt-Based Interactions for Software Help-Seeking [5.755004576310333]
大規模言語モデル(LLM)アシスタントは、ユーザーがソフトウェアをナビゲートするための検索方法の潜在的な代替手段として登場した。
LLMアシスタントは、ドメイン固有のテキスト、ソフトウェアマニュアル、コードリポジトリからの膨大なトレーニングデータを使用して、人間のようなインタラクションを模倣する。
論文 参考訳(メタデータ) (2024-02-12T19:49:58Z) - LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks [18.068035947969044]
計画と推論タスクにおけるLLM(Large Language Models)の役割には、かなりの混乱がある。
自己回帰型LSMは、それ自体で計画や自己検証を行うことはできない、と我々は主張する。
本稿では,LLMの強みと外部モデルベース検証器を併用した bf LLM-Modulo Framework のビジョンを提案する。
論文 参考訳(メタデータ) (2024-02-02T14:43:18Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Making Harmful Behaviors Unlearnable for Large Language Models [50.44915524846857]
大規模言語モデル(LLM)は、様々な領域における汎用AIアシスタントとして大きな可能性を示している。
LLMは、暗黙的または明示的な有害な内容を含むことが多いため、有害なアシスタントに容易に微調整できる。
本稿では, 微調整過程において有害な動作を学習不能にする, 制御可能なトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T09:18:21Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
そこで本研究では,本質的な変化に着目した事前学習モデルの調整方法について検討する。
次に、事前訓練されたモデルと命令調整されたモデルから導かれた説明を比較することで、命令チューニングの影響について研究する。
この結果から,指導指導の3つの重要な影響が明らかになった。
論文 参考訳(メタデータ) (2023-09-30T21:16:05Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
LLM(Large Language Models)は、命令追従に非常に熟練した言語である。
この能力は、迅速なインジェクション攻撃のリスクをもたらす。
このような攻撃に対する命令追従LDMの堅牢性を評価する。
論文 参考訳(メタデータ) (2023-08-17T06:21:50Z) - Enhancing Large Language Models Against Inductive Instructions with
Dual-critique Prompting [55.15697111170836]
本稿では,大規模言語モデル(LLM)のテクスト誘導的指示に対する行動を明らかにするとともに,その真しさと有用性を高める。
広範囲な人的・自動的な評価の結果,帰納的命令処理において LLM に共通する脆弱性が発見された。
異なる帰納的スタイルがモデルに同じエラーを識別する能力に影響を及ぼし、基礎となる仮定の複雑さがモデルの性能にも影響を及ぼす。
論文 参考訳(メタデータ) (2023-05-23T06:38:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。