論文の概要: Rethinking Distance Metrics for Counterfactual Explainability
- arxiv url: http://arxiv.org/abs/2410.14522v1
- Date: Fri, 18 Oct 2024 15:06:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:42.538327
- Title: Rethinking Distance Metrics for Counterfactual Explainability
- Title(参考訳): 対物的説明可能性のための距離メトリクスの再考
- Authors: Joshua Nathaniel Williams, Anurag Katakkar, Hoda Heidari, J. Zico Kolter,
- Abstract要約: 本研究では, 反事実を参照領域から独立して引き出すのではなく, 基礎となるデータ分布からの参照と共同してサンプリングする, 反事実生成手法のフレーミングについて検討する。
我々は、幅広い設定に適用可能な、反ファクト的な類似性のために調整された距離メートル法を導出する。
- 参考スコア(独自算出の注目度): 53.436414009687
- License:
- Abstract: Counterfactual explanations have been a popular method of post-hoc explainability for a variety of settings in Machine Learning. Such methods focus on explaining classifiers by generating new data points that are similar to a given reference, while receiving a more desirable prediction. In this work, we investigate a framing for counterfactual generation methods that considers counterfactuals not as independent draws from a region around the reference, but as jointly sampled with the reference from the underlying data distribution. Through this framing, we derive a distance metric, tailored for counterfactual similarity that can be applied to a broad range of settings. Through both quantitative and qualitative analyses of counterfactual generation methods, we show that this framing allows us to express more nuanced dependencies among the covariates.
- Abstract(参考訳): カウンターファクトな説明は、機械学習における様々な設定において、ポストホックな説明可能性の一般的な方法である。
このような手法は、より望ましい予測を受けながら、与えられた参照に類似した新しいデータポイントを生成することで分類器を説明することに重点を置いている。
本研究では,その参照領域の独立な引き分けではなく,基礎となるデータ分布からの参照との共同サンプリングとして,反ファクト生成手法のフレーミングについて検討する。
このフレーミングを通じて、幅広い設定に適用できる対実的類似性のために調整された距離メートル法を導出する。
反ファクト生成手法の定量的および定性的な解析により、このフレーミングにより、共変量間のよりニュアンスな依存関係を表現できることが示される。
関連論文リスト
- Counting Like Human: Anthropoid Crowd Counting on Modeling the
Similarity of Objects [92.80955339180119]
メインストリームの群衆計数法は 密度マップを補強して 計数結果を得るために統合する。
これに触発された我々は,合理的かつ人為的な集団カウントフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-02T07:00:53Z) - The Impact of Edge Displacement Vaserstein Distance on UD Parsing
Performance [3.7311680121118345]
本研究では,トレーニングデータとテストデータにおけるエッジ変位分布の違いを評価する。
そして、多くの統計的手法を用いて、この仮説を偽造しようと試みる。
より広い意味では、ここで提示される方法論は、NLPにおける将来の相関に基づく探索研究のリファレンスとして機能することができる。
論文 参考訳(メタデータ) (2022-09-15T08:37:12Z) - Resolving label uncertainty with implicit posterior models [71.62113762278963]
本稿では,データサンプルのコレクション間でラベルを共同で推論する手法を提案する。
異なる予測子を後部とする生成モデルの存在を暗黙的に仮定することにより、弱い信念の下での学習を可能にする訓練目標を導出する。
論文 参考訳(メタデータ) (2022-02-28T18:09:44Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Robust Correction of Sampling Bias Using Cumulative Distribution
Functions [19.551668880584973]
変数ドメインとバイアス付きデータセットは、トレーニングとターゲット分布の違いにつながる可能性がある。
これを緩和するための現在のアプローチは、しばしばトレーニングとターゲット確率密度関数の比率を推定することに依存する。
論文 参考訳(メタデータ) (2020-10-23T22:13:00Z) - Learning from Aggregate Observations [82.44304647051243]
本研究では,一組のインスタンスに監視信号が与えられる集合観察から学習する問題について検討する。
本稿では,多種多様な集合観測に適合する一般的な確率的枠組みを提案する。
単純な極大解は様々な微分可能なモデルに適用できる。
論文 参考訳(メタデータ) (2020-04-14T06:18:50Z) - An end-to-end approach for the verification problem: learning the right
distance [15.553424028461885]
パラメトリックな擬似距離を導入し、エンコーダと共同で学習することで、メトリック学習の設定を強化する。
まず、仮説テストに使用できる確率比を近似して示す。
提案手法では,実際の距離を持つメートル法学習に比べて,学習の簡易化が図られている。
論文 参考訳(メタデータ) (2020-02-21T18:46:06Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
本稿では、ユークリッド計量がデータポイント間の類似性のプロキシとなる変分自動エンコーダのフレームワークの拡張を提案する。
我々は、変分オートエンコーダで一般的に使用されるコンパクトな以前のものを、最近発表されたより表現力のある階層型に置き換える。
提案手法は,ビデオ追跡ベンチマークを含む,さまざまなデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-12T09:54:52Z) - On Contrastive Learning for Likelihood-free Inference [20.49671736540948]
Likelihood-freeメソッドは、可能性を評価することができるシミュレータモデルでパラメータ推論を行う。
この可能性のない問題の方法の1つのクラスは、パラメータ観測サンプルのペアを区別するために分類器を使用する。
別の一般的な手法のクラスは、パラメータの後方に直接条件分布を適合させ、特に最近の変種はフレキシブルな神経密度推定器の使用を可能にする。
論文 参考訳(メタデータ) (2020-02-10T13:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。