論文の概要: Measuring Diversity: Axioms and Challenges
- arxiv url: http://arxiv.org/abs/2410.14556v1
- Date: Fri, 18 Oct 2024 15:59:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:42.079957
- Title: Measuring Diversity: Axioms and Challenges
- Title(参考訳): 多様性の測定 - 公理と課題
- Authors: Mikhail Mironov, Liudmila Prokhorenkova,
- Abstract要約: 既存の多様性対策を体系的に検討し、場合によっては望ましくない行動を探る。
信頼できる多様性尺度の3つの望ましい性質(公理)を定式化する: 単調性、一意性、連続性。
望ましい性質をすべて備えた測度の2つの例を構築し、公理のリストが自己矛盾ではないことを証明した。
- 参考スコア(独自算出の注目度): 18.497863598167257
- License:
- Abstract: The concept of diversity is widely used in various applications: from image or molecule generation to recommender systems. Thus, being able to properly measure diversity is important. This paper addresses the problem of quantifying diversity for a set of objects. First, we make a systematic review of existing diversity measures and explore their undesirable behavior in some cases. Based on this review, we formulate three desirable properties (axioms) of a reliable diversity measure: monotonicity, uniqueness, and continuity. We show that none of the existing measures has all three properties and thus these measures are not suitable for quantifying diversity. Then, we construct two examples of measures that have all the desirable properties, thus proving that the list of axioms is not self-contradicting. Unfortunately, the constructed examples are too computationally complex for practical use, thus we pose an open problem of constructing a diversity measure that has all the listed properties and can be computed in practice.
- Abstract(参考訳): 多様性の概念は、画像や分子生成からレコメンデーターシステムまで、様々な用途で広く使われている。
したがって、多様性を適切に測定できることが重要である。
本稿では,一組のオブジェクトの多様性を定量化する問題に対処する。
まず、既存の多様性対策を体系的に検討し、場合によっては望ましくない振る舞いを探求する。
このレビューに基づいて、信頼できる多様性尺度の3つの望ましい性質(公理)、すなわち単調性、一意性、連続性(continuity)を定式化する。
既存の尺度はいずれも3つの性質を持ちておらず,多様性の定量化には適していないことを示す。
そして、すべての望ましい性質を持つ測度の2つの例を構築し、公理のリストが自己矛盾的でないことを証明した。
残念ながら、構築された例は実用には計算が複雑すぎるため、全てのプロパティを列挙し、実際に計算できる多様性尺度を構築するというオープンな問題が発生する。
関連論文リスト
- GRADE: Quantifying Sample Diversity in Text-to-Image Models [66.12068246962762]
本稿では,サンプルの多様性を定量化する手法であるGRADE: Granular Attribute Diversity Evaluationを提案する。
400のコンセプト属性ペアを用いて12のT2Iモデルの全体的な多様性を測定し、すべてのモデルが限定的な変動を示すことを示した。
我々の研究は、サンプルの多様性を測定するための現代的で意味論的に駆動されたアプローチを提案し、T2Iモデルによる出力の驚くべき均一性を強調している。
論文 参考訳(メタデータ) (2024-10-29T23:10:28Z) - Metric Space Magnitude for Evaluating the Diversity of Latent Representations [13.272500655475486]
我々は,潜伏表現の内在的多様性の等級に基づく尺度群を開発する。
我々の測度はデータの摂動下で確実に安定しており、効率的に計算でき、厳密なマルチスケールのキャラクタリゼーションと潜在表現の比較を可能にする。
i) 多様性の自動推定, (ii) モード崩壊の検出, (iii) テキスト, 画像, グラフデータの生成モデルの評価など, さまざまな領域やタスクにおけるそれらの実用性と優れた性能を示す。
論文 参考訳(メタデータ) (2023-11-27T18:19:07Z) - Diversify Question Generation with Retrieval-Augmented Style Transfer [68.00794669873196]
本稿では,検索型スタイル転送のためのフレームワーク RAST を提案する。
本研究の目的は,多様なテンプレートのスタイルを質問生成に活用することである。
多様性報酬と一貫性報酬の重み付けを最大化する新しい強化学習(RL)ベースのアプローチを開発する。
論文 参考訳(メタデータ) (2023-10-23T02:27:31Z) - Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs [78.31625291513589]
自己整合性は、解が複数のサブステップに対する解からなるタスクにおいて、有効な多段階推論の重要な基準であると主張する。
仮説的整合性と構成的整合性という,多段階推論において特に重要である2種類の自己整合性を提案する。
GPT-3/4モデルの複数変種は,多種多様なタスクにおける両タイプの整合性に不整合性を示すことを示した。
論文 参考訳(メタデータ) (2023-05-23T17:25:59Z) - Enriching Disentanglement: From Logical Definitions to Quantitative Metrics [59.12308034729482]
複雑なデータにおける説明的要素を遠ざけることは、データ効率の表現学習にとって有望なアプローチである。
論理的定義と量的指標の関連性を確立し, 理論的に根ざした絡み合いの指標を導出する。
本研究では,非交叉表現の異なる側面を分離することにより,提案手法の有効性を実証的に実証する。
論文 参考訳(メタデータ) (2023-05-19T08:22:23Z) - Achieving Diversity in Counterfactual Explanations: a Review and
Discussion [3.6066164404432883]
XAI(Explainable Artificial Intelligence)の分野では、ユーザに対して、トレーニングされた決定モデルの予測を偽物例で説明する。
本稿では、この多様性の概念のために提案された多くの、時には矛盾する定義についてレビューする。
論文 参考訳(メタデータ) (2023-05-10T02:09:19Z) - System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning [8.280943341629161]
マルチエージェントシステムにおける振る舞いの不均一性の尺度であるシステムニューラルダイバーシティ(SND)を紹介する。
SNDはエージェントが取得した潜時レジリエンスのスキルを計測できるが、タスクパフォーマンス(リワード)などの他のプロキシは失敗する。
我々は、このパラダイムが探索フェーズのブートストラップにどのように使用できるかを示し、最適なポリシーを高速に見つける。
論文 参考訳(メタデータ) (2023-05-03T13:58:13Z) - A Unified Theory of Diversity in Ensemble Learning [4.773356856466191]
本稿では,多様な教師付き学習シナリオにおける多様性の性質を説明する,アンサンブルの多様性の理論を提案する。
この挑戦は、30年以上にわたるオープンな研究課題であるアンサンブル学習の聖杯として言及されている。
論文 参考訳(メタデータ) (2023-01-10T13:51:07Z) - Robust Allocations with Diversity Constraints [65.3799850959513]
エージェント値の積を最大化するナッシュ福祉規則は,多様性の制約が導入されたとき,一意にロバストな位置にあることを示す。
また, ナッシュ・ウェルズによる保証は, 広く研究されているアロケーション・ルールのクラスにおいて, ほぼ最適であることを示す。
論文 参考訳(メタデータ) (2021-09-30T11:09:31Z) - What can phylogenetic metrics tell us about useful diversity in
evolutionary algorithms? [62.997667081978825]
系統的多様性指標(英: Phylogenetic diversity metrics)は、生物学で広く用いられる指標の分類である。
ほとんどの場合、系統学的指標は他の多様性指標と有意に異なる振る舞いをする。
論文 参考訳(メタデータ) (2021-08-28T06:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。