Towards Unsupervised Validation of Anomaly-Detection Models
- URL: http://arxiv.org/abs/2410.14579v1
- Date: Fri, 18 Oct 2024 16:27:04 GMT
- Title: Towards Unsupervised Validation of Anomaly-Detection Models
- Authors: Lihi Idan,
- Abstract summary: This work presents a new paradigm to automated validation of anomaly-detection models, inspired by real-world, collaborative decision-making mechanisms.
We focus on two commonly-used, unsupervised model-validation tasks -- model selection and model evaluation.
- Score: 5.439020425819001
- License:
- Abstract: Unsupervised validation of anomaly-detection models is a highly challenging task. While the common practices for model validation involve a labeled validation set, such validation sets cannot be constructed when the underlying datasets are unlabeled. The lack of robust and efficient unsupervised model-validation techniques presents an acute challenge in the implementation of automated anomaly-detection pipelines, especially when there exists no prior knowledge of the model's performance on similar datasets. This work presents a new paradigm to automated validation of anomaly-detection models, inspired by real-world, collaborative decision-making mechanisms. We focus on two commonly-used, unsupervised model-validation tasks -- model selection and model evaluation -- and provide extensive experimental results that demonstrate the accuracy and robustness of our approach on both tasks.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
We introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors.
We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner.
We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds.
arXiv Detail & Related papers (2024-07-19T13:36:35Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance.
This approach faces significant challenges, including the laborious and costly requirement for additional metadata.
We introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding.
Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design.
arXiv Detail & Related papers (2024-01-12T09:17:32Z) - Attention and Autoencoder Hybrid Model for Unsupervised Online Anomaly
Detection [3.6049348666007934]
This paper introduces a hybrid attention and autoencoder (AE) model for unsupervised online anomaly detection in time series.
The autoencoder captures local structural patterns in short embeddings, while the attention model learns long-term features, facilitating parallel computing with positional encoding.
It employs an attention-based mechanism, akin to the deep transformer model, with key architectural modifications for predicting the next time step window in the autoencoder's latent space.
arXiv Detail & Related papers (2024-01-06T22:55:02Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - One-Step Detection Paradigm for Hyperspectral Anomaly Detection via
Spectral Deviation Relationship Learning [17.590080772567678]
Hyperspectral anomaly detection involves identifying the targets that deviate spectrally from their surroundings.
The current deep detection models are optimized to complete a proxy task, such as background reconstruction or generation.
In this paper, an unsupervised transferred direct detection model is proposed, which is optimized directly for the anomaly detection task.
arXiv Detail & Related papers (2023-03-22T06:41:09Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models.
We propose a general methodology named watermarking in this paper.
We learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking.
arXiv Detail & Related papers (2022-10-27T06:12:32Z) - On the Limits of Evaluating Embodied Agent Model Generalization Using
Validation Sets [101.28658250723804]
This paper experiments with augmenting a transformer model with modules that effectively utilize a wider field of view and learn to choose whether the next step requires a navigation or manipulation action.
We observe that the proposed modules resulted in improved, and in fact state-of-the-art performance on an unseen validation set of a popular benchmark dataset, ALFRED.
We highlight this result as we believe it may be a wider phenomenon in machine learning tasks but primarily noticeable only in benchmarks that limit evaluations on test splits.
arXiv Detail & Related papers (2022-05-18T23:52:21Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
Data anomalies are ubiquitous in real world datasets, and can have an adverse impact on machine learning (ML) systems.
We propose a novel model-based anomaly detection method, that we call Out-of-Bag anomaly detection.
We show our method can improve the accuracy and reliability of an ML system as data pre-processing step via a case study on home valuation.
arXiv Detail & Related papers (2020-09-20T06:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.