Complementary Learning for Real-World Model Failure Detection
- URL: http://arxiv.org/abs/2407.14306v1
- Date: Fri, 19 Jul 2024 13:36:35 GMT
- Title: Complementary Learning for Real-World Model Failure Detection
- Authors: Daniel Bogdoll, Finn Sartoris, Vincent Geppert, Svetlana Pavlitska, J. Marius Zöllner,
- Abstract summary: We introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors.
We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner.
We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds.
- Score: 15.779651238128562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world autonomous driving, deep learning models can experience performance degradation due to distributional shifts between the training data and the driving conditions encountered. As is typical in machine learning, it is difficult to acquire a large and potentially representative labeled test set to validate models in preparation for deployment in the wild. In this work, we introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors. We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner and detect and classify model discrepancies subsequently. We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds, for an extensive quantitative analysis.
Related papers
- Provable unlearning in topic modeling and downstream tasks [36.571324268874264]
Provable guarantees for unlearning are often limited to supervised learning settings.
We provide the first theoretical guarantees for unlearning in the pre-training and fine-tuning paradigm.
We show that it is easier to unlearn pre-training data from models that have been fine-tuned to a particular task, and one can unlearn this data without modifying the base model.
arXiv Detail & Related papers (2024-11-19T16:04:31Z) - Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation [0.5242869847419834]
This paper presents a novel method for discovering systematic errors in segmentation models.
We leverage multimodal foundation models to retrieve errors and use conceptual linkage along with erroneous nature to study the systematic nature of these errors.
Our work opens up the avenue to model analysis and intervention that have so far been underexplored in semantic segmentation.
arXiv Detail & Related papers (2024-11-16T17:31:37Z) - Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
We study how to model human agents' mobility behavior toward effective anomaly detection.
We use GPS data as a sequence stay-point events, each with a set of characterizingtemporal features.
Experiments on large expert-simulated datasets with tens of thousands of agents demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2024-10-02T06:57:08Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - An Empirical Study of Deep Learning Models for Vulnerability Detection [4.243592852049963]
We surveyed and reproduced 9 state-of-the-art deep learning models on 2 widely used vulnerability detection datasets.
We investigated model capabilities, training data, and model interpretation.
Our findings can help better understand model results, provide guidance on preparing training data, and improve the robustness of the models.
arXiv Detail & Related papers (2022-12-15T19:49:34Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - Certifying Data-Bias Robustness in Linear Regression [12.00314910031517]
We present a technique for certifying whether linear regression models are pointwise-robust to label bias in a training dataset.
We show how to solve this problem exactly for individual test points, and provide an approximate but more scalable method.
We also unearth gaps in bias-robustness, such as high levels of non-robustness for certain bias assumptions on some datasets.
arXiv Detail & Related papers (2022-06-07T20:47:07Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITE is a data-centric framework to identify incongruous regions of in-distribution (ID) data.
We empirically validate Data-SUITE's performance and coverage guarantees.
arXiv Detail & Related papers (2022-02-17T18:58:31Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Assessing the Quality of the Datasets by Identifying Mislabeled Samples [14.881597737762316]
We propose a novel statistic -- noise score -- as a measure for the quality of each data point to identify mislabeled samples.
In our work, we use the representations derived by the inference network of data quality supervised variational autoencoder (AQUAVS)
We validate our proposed statistic through experimentation by corrupting MNIST, FashionMNIST, and CIFAR10/100 datasets.
arXiv Detail & Related papers (2021-09-10T17:14:09Z) - Self Training with Ensemble of Teacher Models [8.257085583227695]
In order to train robust deep learning models, large amounts of labelled data is required.
In the absence of such large repositories of labelled data, unlabeled data can be exploited for the same.
Semi-Supervised learning aims to utilize such unlabeled data for training classification models.
arXiv Detail & Related papers (2021-07-17T09:44:09Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z) - Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain
Adaptation [87.60688582088194]
We propose a novel Self-Supervised Noisy Label Learning method.
Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin.
arXiv Detail & Related papers (2021-02-23T10:51:45Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Improving Generalization of Deep Fault Detection Models in the Presence
of Mislabeled Data [1.3535770763481902]
We propose a novel two-step framework for robust training with label noise.
In the first step, we identify outliers (including the mislabeled samples) based on the update in the hypothesis space.
In the second step, we propose different approaches to modifying the training data based on the identified outliers and a data augmentation technique.
arXiv Detail & Related papers (2020-09-30T12:33:25Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
Data anomalies are ubiquitous in real world datasets, and can have an adverse impact on machine learning (ML) systems.
We propose a novel model-based anomaly detection method, that we call Out-of-Bag anomaly detection.
We show our method can improve the accuracy and reliability of an ML system as data pre-processing step via a case study on home valuation.
arXiv Detail & Related papers (2020-09-20T06:01:52Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - Robust and On-the-fly Dataset Denoising for Image Classification [72.10311040730815]
On-the-fly Data Denoising (ODD) is robust to mislabeled examples, while introducing almost zero computational overhead compared to standard training.
ODD is able to achieve state-of-the-art results on a wide range of datasets including real-world ones such as WebVision and Clothing1M.
arXiv Detail & Related papers (2020-03-24T03:59:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.