Complementary Learning for Real-World Model Failure Detection
- URL: http://arxiv.org/abs/2407.14306v1
- Date: Fri, 19 Jul 2024 13:36:35 GMT
- Title: Complementary Learning for Real-World Model Failure Detection
- Authors: Daniel Bogdoll, Finn Sartoris, Vincent Geppert, Svetlana Pavlitska, J. Marius Zöllner,
- Abstract summary: We introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors.
We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner.
We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds.
- Score: 15.779651238128562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world autonomous driving, deep learning models can experience performance degradation due to distributional shifts between the training data and the driving conditions encountered. As is typical in machine learning, it is difficult to acquire a large and potentially representative labeled test set to validate models in preparation for deployment in the wild. In this work, we introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors. We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner and detect and classify model discrepancies subsequently. We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds, for an extensive quantitative analysis.
Related papers
- Provable unlearning in topic modeling and downstream tasks [36.571324268874264]
Provable guarantees for unlearning are often limited to supervised learning settings.
We provide the first theoretical guarantees for unlearning in the pre-training and fine-tuning paradigm.
We show that it is easier to unlearn pre-training data from models that have been fine-tuned to a particular task, and one can unlearn this data without modifying the base model.
arXiv Detail & Related papers (2024-11-19T16:04:31Z) - Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation [0.5242869847419834]
This paper presents a novel method for discovering systematic errors in segmentation models.
We leverage multimodal foundation models to retrieve errors and use conceptual linkage along with erroneous nature to study the systematic nature of these errors.
Our work opens up the avenue to model analysis and intervention that have so far been underexplored in semantic segmentation.
arXiv Detail & Related papers (2024-11-16T17:31:37Z) - Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
We study how to model human agents' mobility behavior toward effective anomaly detection.
We use GPS data as a sequence stay-point events, each with a set of characterizingtemporal features.
Experiments on large expert-simulated datasets with tens of thousands of agents demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2024-10-02T06:57:08Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - An Empirical Study of Deep Learning Models for Vulnerability Detection [4.243592852049963]
We surveyed and reproduced 9 state-of-the-art deep learning models on 2 widely used vulnerability detection datasets.
We investigated model capabilities, training data, and model interpretation.
Our findings can help better understand model results, provide guidance on preparing training data, and improve the robustness of the models.
arXiv Detail & Related papers (2022-12-15T19:49:34Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.