論文の概要: Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
- arxiv url: http://arxiv.org/abs/2410.14592v1
- Date: Fri, 18 Oct 2024 16:43:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:07.142934
- Title: Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
- Title(参考訳): 双線型サドル点問題における縮約性と線形収束:作用素論的アプローチ
- Authors: Colin Dirren, Mattia Bianchi, Panagiotis D. Grontas, John Lygeros, Florian Dörfler,
- Abstract要約: 凸凹型双線型サドル点問題 $min_x max_y f(x) + ytop Ax - g(y)$ について検討する。
この問題の解決策は多くの機械学習タスクの中核にある。
- 参考スコア(独自算出の注目度): 4.895675355301809
- License:
- Abstract: We study the convex-concave bilinear saddle-point problem $\min_x \max_y f(x) + y^\top Ax - g(y)$, where both, only one, or none of the functions $f$ and $g$ are strongly convex, and suitable rank conditions on the matrix $A$ hold. The solution of this problem is at the core of many machine learning tasks. By employing tools from operator theory, we systematically prove the contractivity (in turn, the linear convergence) of several first-order primal-dual algorithms, including the Chambolle-Pock method. Our approach results in concise and elegant proofs, and it yields new convergence guarantees and tighter bounds compared to known results.
- Abstract(参考訳): 凸凹双線型サドル点問題 $\min_x \max_y f について検討する。
(x) + y^\top Ax - g
(y)$ は、f$ と $g$ の両方が強い凸であり、行列 $A$ hold 上の適切なランク条件である。
この問題の解決策は多くの機械学習タスクの中核にある。
演算子理論からのツールを用いることで、シャンブル・ポック法を含むいくつかの一階原始双対アルゴリズムの縮約(交互に線形収束)を体系的に証明する。
我々のアプローチは簡潔でエレガントな証明をもたらし、既知の結果と比較して新しい収束保証と厳密な境界をもたらす。
関連論文リスト
- Single-Loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions [41.43895948769255]
非滑らかな非漸近公正問題のクラスを$min_x[yin Yphi(x, y) - max_zin Zpsix(x, z)]$の形で示す。
本稿では,これらの問題を解く最初の方法であるエンベロープ近似勾配SMAGを提案する。
論文 参考訳(メタデータ) (2024-05-28T20:52:46Z) - Revisiting Inexact Fixed-Point Iterations for Min-Max Problems: Stochasticity and Structured Nonconvexity [18.427215139020632]
1L 1$は、マルチレベルなCarloイテレーションであっても、最先端の問題を改善するために使用できることを示す。
解に関する唯一のホールドが新しい1L 1$理論である場合、不正確なハルパーネス推定器を1L 1$で解析する。
論文 参考訳(メタデータ) (2024-02-07T18:22:41Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
本稿では,2段階の適応性を持つオンライン凸最適化手法を提案する。
我々は$mathcalO(log V_T)$, $mathcalO(d log V_T)$, $hatmathcalO(sqrtV_T)$ regret bounds for strong convex, exp-concave and convex loss function。
論文 参考訳(メタデータ) (2023-07-17T09:55:35Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
本稿では、2つの異なる対象の一般円錐最適化を最小化する近似二階定常点(SOSP)について検討する。
特に、近似SOSPを見つけるためのNewton-CGベースの拡張共役法を提案する。
論文 参考訳(メタデータ) (2023-01-10T20:43:29Z) - Generalized Optimistic Methods for Convex-Concave Saddle Point Problems [24.5327016306566]
この楽観的な手法は凸凹点問題の解法として人気が高まっている。
我々は,係数を知らずにステップサイズを選択するバックトラックライン探索手法を開発した。
論文 参考訳(メタデータ) (2022-02-19T20:31:05Z) - Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave
Saddle-Point Problems with Bilinear Coupling [84.47780064014262]
線形凸凹サドル点問題 $min_xmax_y f(x) ytopmathbfA x - g(y) について検討する。
論文 参考訳(メタデータ) (2021-12-30T20:31:46Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
凸凹対象 $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, ここで、$f$ は局所リプシッツ勾配を持つ凸関数であり、$g$ は凸かつ非滑らかである。
主勾配ステップと2段ステップを交互に交互に行うCondat-Vuアルゴリズムの適応バージョンを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:19:30Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
多くの応用において、部分重なり合う点集合が対応するRPMアルゴリズムに不変であるようなアルゴリズムが必要である。
まず、目的が立方体有界関数であることを示し、次に、三線型および双線型単相変換の凸エンベロープを用いて、その下界を導出する。
次に、変換変数上の分岐のみを効率よく実行するブランチ・アンド・バウンド(BnB)アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-01-19T04:24:23Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
非滑らかで非滑らかな関数の定常点を見つけるための最初の非漸近解析を提供する。
特に、アダマール半微分可能函数(おそらく非滑らか関数の最大のクラス)について研究する。
論文 参考訳(メタデータ) (2020-02-10T23:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。