Swiss Army Knife: Synergizing Biases in Knowledge from Vision Foundation Models for Multi-Task Learning
- URL: http://arxiv.org/abs/2410.14633v1
- Date: Fri, 18 Oct 2024 17:32:39 GMT
- Title: Swiss Army Knife: Synergizing Biases in Knowledge from Vision Foundation Models for Multi-Task Learning
- Authors: Yuxiang Lu, Shengcao Cao, Yu-Xiong Wang,
- Abstract summary: Vision Foundation Models (VFMs) have demonstrated outstanding performance on numerous downstream tasks.
Due to their inherent representation biases, VFMs exhibit advantages and disadvantages across distinct vision tasks.
We propose a novel and versatile "Swiss Army Knife" (SAK) solution, which adaptively distills knowledge from a committee of VFMs to enhance multi-task learning.
- Score: 29.33199582163445
- License:
- Abstract: Vision Foundation Models (VFMs) have demonstrated outstanding performance on numerous downstream tasks. However, due to their inherent representation biases originating from different training paradigms, VFMs exhibit advantages and disadvantages across distinct vision tasks. Although amalgamating the strengths of multiple VFMs for downstream tasks is an intuitive strategy, effectively exploiting these biases remains a significant challenge. In this paper, we propose a novel and versatile "Swiss Army Knife" (SAK) solution, which adaptively distills knowledge from a committee of VFMs to enhance multi-task learning. Unlike existing methods that use a single backbone for knowledge transfer, our approach preserves the unique representation bias of each teacher by collaborating the lightweight Teacher-Specific Adapter Path modules with the Teacher-Agnostic Stem. Through dynamic selection and combination of representations with Mixture-of-Representations Routers, our SAK is capable of synergizing the complementary strengths of multiple VFMs. Extensive experiments show that our SAK remarkably outperforms prior state of the arts in multi-task learning by 10% on the NYUD-v2 benchmark, while also providing a flexible and robust framework that can readily accommodate more advanced model designs.
Related papers
- Improving Generalization in Visual Reasoning via Self-Ensemble [0.0]
We propose self-ensemble, a novel method that improves the generalization and visual reasoning of the model without updating any parameters.
Our key insight is that LVLM itself can ensemble without the need for any other LVLMs, which helps to unlock their internal capabilities.
arXiv Detail & Related papers (2024-10-28T10:04:40Z) - Multiple Heads are Better than One: Mixture of Modality Knowledge Experts for Entity Representation Learning [51.80447197290866]
Learning high-quality multi-modal entity representations is an important goal of multi-modal knowledge graph (MMKG) representation learning.
Existing methods focus on crafting elegant entity-wise multi-modal fusion strategies.
We introduce a novel framework with Mixture of Modality Knowledge experts (MoMoK) to learn adaptive multi-modal entity representations.
arXiv Detail & Related papers (2024-05-27T06:36:17Z) - Efficient Multi-Model Fusion with Adversarial Complementary Representation Learning [26.393644289860084]
Single-model systems often suffer from deficiencies in tasks such as speaker verification (SV) and image classification.
We propose an adversarial complementary representation learning (ACoRL) framework that enables newly trained models to avoid previously acquired knowledge.
arXiv Detail & Related papers (2024-04-24T07:47:55Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
We present a systematic analysis of MM-VUFMs specifically designed for road scenes.
Our objective is to provide a comprehensive overview of common practices, referring to task-specific models, unified multi-modal models, unified multi-task models, and foundation model prompting techniques.
We provide insights into key challenges and future trends, such as closed-loop driving systems, interpretability, embodied driving agents, and world models.
arXiv Detail & Related papers (2024-02-05T12:47:09Z) - Unlock the Power: Competitive Distillation for Multi-Modal Large
Language Models [17.25135606956287]
Competitive Multi-modal Distillation framework (CoMD) captures bidirectional feedback between teacher and student models.
Our experimental analysis of diverse datasets shows that our knowledge transfer method consistently improves the capabilities of the student model.
arXiv Detail & Related papers (2023-11-14T14:49:46Z) - VideoAdviser: Video Knowledge Distillation for Multimodal Transfer
Learning [6.379202839994046]
Multimodal transfer learning aims to transform pretrained representations of diverse modalities into a common domain space for effective multimodal fusion.
We propose VideoAdviser, a video knowledge distillation method to transfer multimodal knowledge of video-enhanced prompts from a multimodal fundamental model to a specific modal fundamental model.
We evaluate our method in two challenging multimodal tasks: video-level sentiment analysis and audio-visual retrieval.
arXiv Detail & Related papers (2023-09-27T08:44:04Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks.
In this work, we assume each task is associated with a subset of latent discrete skills from a (potentially small) inventory.
We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning.
arXiv Detail & Related papers (2022-02-28T16:07:19Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
We propose a self-paced knowledge distillation framework, termed Learning From Multiple Experts (LFME)
We refer to these models as 'Experts', and the proposed LFME framework aggregates the knowledge from multiple 'Experts' to learn a unified student model.
We conduct extensive experiments and demonstrate that our method is able to achieve superior performances compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-06T12:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.