論文の概要: Convergence of Manifold Filter-Combine Networks
- arxiv url: http://arxiv.org/abs/2410.14639v1
- Date: Fri, 18 Oct 2024 17:40:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:15.575210
- Title: Convergence of Manifold Filter-Combine Networks
- Title(参考訳): Manifold Filter-Combine Networks の収束性
- Authors: David R. Johnson, Joyce Chew, Siddharth Viswanath, Edward De Brouwer, Deanna Needell, Smita Krishnaswamy, Michael Perlmutter,
- Abstract要約: 多様体ニューラルネットワーク(MNN)をよりよく理解するために,Manifold Filter-Combine Networks (MFCNs)を導入する。
スパースグラフによる多様体の近似に依存する高次元点雲上でのMFCNの実装法を提案する。
我々は,データ点数が無限大になる傾向にあるため,この手法は極限に収束するという意味で一貫したものであることを証明した。
- 参考スコア(独自算出の注目度): 18.590886216749528
- License:
- Abstract: In order to better understand manifold neural networks (MNNs), we introduce Manifold Filter-Combine Networks (MFCNs). The filter-combine framework parallels the popular aggregate-combine paradigm for graph neural networks (GNNs) and naturally suggests many interesting families of MNNs which can be interpreted as the manifold analog of various popular GNNs. We then propose a method for implementing MFCNs on high-dimensional point clouds that relies on approximating the manifold by a sparse graph. We prove that our method is consistent in the sense that it converges to a continuum limit as the number of data points tends to infinity.
- Abstract(参考訳): 多様体ニューラルネットワーク (MNN) をよりよく理解するために, マニフォールドフィルタ・コミンネットワーク (MFCN) を導入する。
フィルタ・コンビイン・フレームワークはグラフニューラルネットワーク(GNN)の一般的な集約・コンビイン・パラダイムと平行であり、様々な人気のあるGNNの多様体類似体として解釈できるMNNの多くの興味深いファミリーを自然に示唆している。
次に, スパースグラフによる多様体の近似に依存する高次元点雲上でのMFCNの実装法を提案する。
本手法は,データ点数が無限大になる傾向にあるため,連続極限に収束するという意味で一貫した手法であることを示す。
関連論文リスト
- Manifold Filter-Combine Networks [22.19399386945317]
マニフォールドフィルタ・コミンネットワーク(MFCN)と呼ばれる多様体ニューラルネットワーク(MNN)のクラスを導入する。
このクラスは、様々な人気のあるグラフニューラルネットワーク(GNN)の多様体アナログと考えることができる様々なサブクラスを含んでいる。
論文 参考訳(メタデータ) (2023-07-08T23:19:53Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
本稿では,グラフニューラルネットワーク (GNN) と多様体ニューラルネットワーク (MNN) の関係について検討する。
これらのグラフ上の畳み込みフィルタとニューラルネットワークが連続多様体上の畳み込みフィルタとニューラルネットワークに収束することを示す。
論文 参考訳(メタデータ) (2023-05-29T08:27:17Z) - Higher-order Sparse Convolutions in Graph Neural Networks [17.647346486710514]
グラフ信号のソボレフノルムに基づく新しい高次スパース畳み込みを導入する。
S-SobGNNは、最先端のいくつかの手法と比較して、全てのアプリケーションで競合性能を示す。
論文 参考訳(メタデータ) (2023-02-21T08:08:18Z) - Convolutional Neural Networks on Manifolds: From Graphs and Back [122.06927400759021]
本稿では,多様体畳み込みフィルタと点次非線形性からなる多様体ニューラルネットワーク(MNN)を提案する。
要約すると、我々は大きなグラフの極限として多様体モデルに焦点を合わせ、MNNを構築するが、それでもMNNの離散化によってグラフニューラルネットワークを復活させることができる。
論文 参考訳(メタデータ) (2022-10-01T21:17:39Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - MGDCF: Distance Learning via Markov Graph Diffusion for Neural
Collaborative Filtering [96.65234340724237]
現状のGNNベースCFモデルとコンテキスト符号化に基づく従来の1層NRLモデルとの等価性を示す。
マルコフグラフ拡散協調フィルタ (MGDCF) を用いて, 最先端のGNNベースCFモデルを一般化する。
論文 参考訳(メタデータ) (2022-04-05T17:24:32Z) - Understanding the Basis of Graph Convolutional Neural Networks via an
Intuitive Matched Filtering Approach [7.826806223782053]
グラフ畳み込みニューラルネットワーク(GCNN)は不規則領域のデータ処理において好まれるモデルとなっている。
これらの畳み込み層は、選択したパターンと一致した入力データのフィルタリングを効果的に行うことを示す。
数値的な例は、GCNN操作の様々なステップをガイドし、視覚的にも数値的にも学習する。
論文 参考訳(メタデータ) (2021-08-23T12:41:06Z) - Ranking Structured Objects with Graph Neural Networks [0.0]
RankGNNはグラフ間のペアワイズ選好のセットでトレーニングされており、一方が他方よりも好まれていることを示唆している。
この問題の実用的な適用の1つは薬剤の候補者の大規模なコレクションの最も有望な分子を見つけたいと思う薬剤のスクリーニングです。
提案するペアワイズrankgnnアプローチが,平均的なポイントワイズベースラインアプローチのランキング性能を有意に上回っているか,少なくとも同等であることを示す。
論文 参考訳(メタデータ) (2021-04-18T14:40:59Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。