論文の概要: Enhancing Large Language Models' Situated Faithfulness to External Contexts
- arxiv url: http://arxiv.org/abs/2410.14675v1
- Date: Fri, 18 Oct 2024 17:59:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:57.794383
- Title: Enhancing Large Language Models' Situated Faithfulness to External Contexts
- Title(参考訳): 大規模言語モデルの外的文脈への忠実度向上
- Authors: Yukun Huang, Sanxing Chen, Hongyi Cai, Bhuwan Dhingra,
- Abstract要約: 大きな言語モデル(LLM)は、しばしば外部情報をコンテキストとして拡張される。
正しいコンテキストと間違ったコンテキストの両方を提供する場合、オープンソースモデルとプロプライエタリモデルの両方が、外部情報に過度に依存する傾向にあることを示す。
自己ガイド型信頼推論(SCR)とルールベース信頼推論(RCR)の2つのアプローチを提案する。
- 参考スコア(独自算出の注目度): 10.748768620243982
- License:
- Abstract: Large Language Models (LLMs) are often augmented with external information as contexts, but this external information can sometimes be inaccurate or even intentionally misleading. We argue that robust LLMs should demonstrate situated faithfulness, dynamically calibrating their trust in external information based on their confidence in the internal knowledge and the external context. To benchmark this capability, we evaluate LLMs across several QA datasets, including a newly created dataset called RedditQA featuring in-the-wild incorrect contexts sourced from Reddit posts. We show that when provided with both correct and incorrect contexts, both open-source and proprietary models tend to overly rely on external information, regardless of its factual accuracy. To enhance situated faithfulness, we propose two approaches: Self-Guided Confidence Reasoning (SCR) and Rule-Based Confidence Reasoning (RCR). SCR enables models to self-access the confidence of external information relative to their own internal knowledge to produce the most accurate answer. RCR, in contrast, extracts explicit confidence signals from the LLM and determines the final answer using predefined rules. Our results show that for LLMs with strong reasoning capabilities, such as GPT-4o and GPT-4o mini, SCR outperforms RCR, achieving improvements of up to 24.2% over a direct input augmentation baseline. Conversely, for a smaller model like Llama-3-8B, RCR outperforms SCR. Fine-tuning SCR with our proposed Confidence Reasoning Direct Preference Optimization (CR-DPO) method improves performance on both seen and unseen datasets, yielding an average improvement of 8.9% on Llama-3-8B. In addition to quantitative results, we offer insights into the relative strengths of SCR and RCR. Our findings highlight promising avenues for improving situated faithfulness in LLMs. The data and code are released.
- Abstract(参考訳): 大きな言語モデル(LLM)は、しばしば外部情報を文脈として拡張するが、この外部情報は不正確な場合も、意図的に誤解を招くこともある。
我々は、ロバストLLMは、内部知識と外部コンテキストに対する信頼度に基づいて、外部情報の信頼度を動的に調整し、位置忠実さを示すべきであると論じる。
この能力をベンチマークするために、複数のQAデータセットにわたるLCMを評価しました。
正しいコンテキストと誤ったコンテキストの両方を提供する場合、オープンソースモデルとプロプライエタリモデルの両方が、実際の正確性に関わらず、外部情報に過度に依存する傾向にあることを示す。
本研究では,信頼度を高めるために,自己ガイド型信頼推論(SCR)とルールベース信頼推論(RCR)の2つのアプローチを提案する。
SCRは、モデルが自身の内部知識に対して外部情報の信頼性を自己アクセスし、最も正確な回答を生成することを可能にする。
対照的に、RCRはLCMから明確な信頼信号を抽出し、事前定義されたルールを用いて最終回答を決定する。
その結果, GPT-4o や GPT-4o mini などの強い推論能力を持つ LLM では, SCR は RCR よりも優れ, 直接入力増強ベースラインよりも最大 24.2% 向上していることがわかった。
逆に、Llama-3-8Bのような小さなモデルでは、RCRはSCRより優れている。
提案手法であるCR-DPO(Confidence Reasoning Direct Preference Optimization)を用いてSCRを微調整することにより,Llama-3-8Bでは平均8.9%向上した。
定量的な結果に加えて,SCRとRCRの相対強度に関する知見も提供する。
以上の結果から,LSMにおける位置忠実性向上の道筋が示唆された。
データとコードはリリースされます。
関連論文リスト
- Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
検索強化生成(RAG)から非実効出力を検出する軽量な手法を提案する。
私たちは、二項決定を下すためにしきい値にできる事実性スコアを計算します。
実験の結果, ROC曲線 (AUC) の下では, 関連するオープンソースデータセットの広範囲にわたって高い面積を示すことができた。
論文 参考訳(メタデータ) (2024-11-01T20:44:59Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
IncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)について紹介する。
我々は、SNR(Signal-to-Noise Ratio)ベースのスパン不確実性を用いて、テキストチャンク間の類似性を推定する。
不確かさRAGはLLaMA-2-7Bでベースラインを2.03%上回り、最先端の結果を得る。
論文 参考訳(メタデータ) (2024-10-03T17:39:38Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - Confidence Estimation for LLM-Based Dialogue State Tracking [9.305763502526833]
大規模言語モデル(LLM)に基づく会話型AIシステムでは,モデルの出力に対する信頼度の推定が重要である。
オープン・アンド・クローズド・ウェイト LLM に提案するアプローチを含む,手法の徹底的な探索を行う。
以上の結果から, 微調整式オープンウェイトLLMはAUC性能が向上し, 信頼性スコアの校正精度が向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-15T06:44:26Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelfは、大規模言語モデルに、より正確なきめ細かな信頼推定を表現するためのトレーニングフレームワークである。
さらに、SaySelf は LLM に対して、パラメトリック知識のギャップを明確に識別する自己反射的合理性を生成するよう指示する。
生成した自己反射的理性は合理的であり、キャリブレーションにさらに貢献できることを示す。
論文 参考訳(メタデータ) (2024-05-31T16:21:16Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
信頼性・確率アライメントの概念を紹介します。
モデルの内部と信頼感の一致を調査する。
分析したモデルのうち、OpenAIのGPT-4は信頼性と信頼性のアライメントが最強であった。
論文 参考訳(メタデータ) (2024-05-25T15:42:04Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - The Calibration Gap between Model and Human Confidence in Large Language
Models [14.539888672603743]
大規模言語モデル(LLM)は、その予測がどの程度正確であるかを正確に評価し、伝達できるという意味で、十分に校正される必要がある。
最近の研究は、内部LCMの信頼性評価の品質に焦点を当てている。
本稿では,LLMの応答における外部人間の信頼度とモデルの内部信頼度との相違について検討する。
論文 参考訳(メタデータ) (2024-01-24T22:21:04Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in
Self-Refined Open-Source Models [53.859446823312126]
SoTAは7Bから65Bまでのさまざまなサイズのオープンソースモデルを平均して、ベースラインのパフォーマンスから8.2%改善している。
厳密に言えば、Vicuna-7Bのような非常に小さなメモリフットプリントを持つモデルでさえ、全体的な11.74%の改善と、高い創造性、オープンエンドタスクの25.39%の改善を示している。
論文 参考訳(メタデータ) (2023-10-11T15:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。