論文の概要: Achieving Generalization in Orchestrating GNSS Interference Monitoring Stations Through Pseudo-Labeling
- arxiv url: http://arxiv.org/abs/2410.14686v1
- Date: Thu, 03 Oct 2024 11:07:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 06:14:45.419807
- Title: Achieving Generalization in Orchestrating GNSS Interference Monitoring Stations Through Pseudo-Labeling
- Title(参考訳): 擬似ラベリングによるGNSS干渉監視局の総合化
- Authors: Lucas Heublein, Tobias Feigl, Alexander Rügamer, Felix Ott,
- Abstract要約: ジャミング装置はグローバルナビゲーション衛星システム(GNSS)受信機の精度を損なう。
本稿では,ハイウェイに沿って配置された監視局を介し,干渉の分類を高度に一般化するML手法を提案する。
本手法は,屋内環境から現実シナリオへの適応において,高い性能を示す。
- 参考スコア(独自算出の注目度): 44.24482830284491
- License:
- Abstract: The accuracy of global navigation satellite system (GNSS) receivers is significantly compromised by interference from jamming devices. Consequently, the detection of these jammers are crucial to mitigating such interference signals. However, robust classification of interference using machine learning (ML) models is challenging due to the lack of labeled data in real-world environments. In this paper, we propose an ML approach that achieves high generalization in classifying interference through orchestrated monitoring stations deployed along highways. We present a semi-supervised approach coupled with an uncertainty-based voting mechanism by combining Monte Carlo and Deep Ensembles that effectively minimizes the requirement for labeled training samples to less than 5% of the dataset while improving adaptability across varying environments. Our method demonstrates strong performance when adapted from indoor environments to real-world scenarios.
- Abstract(参考訳): グローバルナビゲーション衛星システム(GNSS)受信機の精度は、妨害装置からの干渉によって著しく損なわれている。
したがって、このような干渉信号を緩和するためには、これらのジャマーの検出が不可欠である。
しかし、機械学習(ML)モデルを用いた干渉の堅牢な分類は、実環境におけるラベル付きデータの欠如により困難である。
本稿では,高速道路沿いの監視局を編成し,干渉の分類を高度に一般化するML手法を提案する。
本稿では,モンテカルロとディープ・アンサンブルを組み合わせた不確実性に基づく投票機構と組み合わせた半教師付きアプローチを提案する。
本手法は,屋内環境から現実シナリオへの適応において,高い性能を示す。
関連論文リスト
- Does Unsupervised Domain Adaptation Improve the Robustness of Amortized Bayesian Inference? A Systematic Evaluation [3.4109073456116477]
近年のロバストなアプローチでは、シミュレーションおよび観測データの埋め込み空間と一致するように、教師なし領域適応(UDA)が採用されている。
本研究では,領域間の要約空間の整合が,非モデル化現象や雑音の影響を効果的に緩和することを示した。
以上の結果から,UDA技術を用いてABIのロバスト性を高める際に,不特定型を慎重に検討することの必要性が示唆された。
論文 参考訳(メタデータ) (2025-02-07T14:13:51Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - Multimodal-to-Text Prompt Engineering in Large Language Models Using Feature Embeddings for GNSS Interference Characterization [2.469551405169408]
大規模言語モデル(LLMs)は、NLP、情報検索、レコメンデーションシステムなど、さまざまな領域にまたがる高度なAIシステムである。
干渉監視は 道路上の車両の 位置決めの信頼性を確保するために 不可欠だ
我々のパイプラインは干渉分類タスクにおいて最先端の機械学習モデルより優れています。
論文 参考訳(メタデータ) (2025-01-09T09:01:04Z) - Generalized Uncertainty-Based Evidential Fusion with Hybrid Multi-Head Attention for Weak-Supervised Temporal Action Localization [28.005080560540133]
弱教師付き時間的アクションローカライゼーション(WS-TAL)は、完全なアクションインスタンスをローカライズし、それらをビデオレベルのラベルに分類するタスクである。
動作背景のあいまいさは、主にアグリゲーションと動作内変動に起因するバックグラウンドノイズによって引き起こされるものであり、既存のWS-TAL手法にとって重要な課題である。
本稿では,ハイブリッドマルチヘッドアテンション(HMHA)モジュールと一般化された不確実性に基づく明らかな融合(GUEF)モジュールを導入し,この問題に対処する。
論文 参考訳(メタデータ) (2024-12-27T03:04:57Z) - Vaccinating Federated Learning for Robust Modulation Classification in Distributed Wireless Networks [0.0]
雑音レベルの異なる信号間の一般化性向上を目的とした新しいAMCモデルであるFedVaccineを提案する。
FedVaccineは、分割学習戦略を用いることで、既存のFLベースのAMCモデルの線形集約の限界を克服する。
これらの結果は、実用的な無線ネットワーク環境におけるAMCシステムの信頼性と性能を高めるためのFedVaccineの可能性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-10-16T17:48:47Z) - Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization [42.14439854721613]
ジャミング装置はグローバルナビゲーション衛星システム(GNSS)からの信号を妨害する
本稿では、低周波アンテナから得られたスナップショットからなる広範囲なデータセットを提案する。
本研究の目的は,機械学習モデル(ML)の環境変化に対するレジリエンスを評価することである。
論文 参考訳(メタデータ) (2024-09-23T15:20:33Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Information Directed Sampling for Linear Partial Monitoring [112.05623123909895]
線形報酬と観測構造を持つ部分的監視のための情報指向サンプリング(IDS)を導入する。
IDSは、ゲームの正確な可観測性条件に依存する適応的な最悪の後悔率を達成する。
結果がコンテキストおよびカーネル化設定にまで拡張され、アプリケーションの範囲が大幅に増加する。
論文 参考訳(メタデータ) (2020-02-25T21:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。