Leveraging Intra-Period and Inter-Period Features for Enhanced Passenger Flow Prediction of Subway Stations
- URL: http://arxiv.org/abs/2410.14727v1
- Date: Wed, 16 Oct 2024 03:14:51 GMT
- Title: Leveraging Intra-Period and Inter-Period Features for Enhanced Passenger Flow Prediction of Subway Stations
- Authors: Xiannan Huang, Chao Yang, Quan Yuan,
- Abstract summary: Short-term passenger flow prediction of subway stations plays a vital role in enabling station personnel to proactively address changes in passenger volume.
There is a lack of research on effectively integrating features from different periods, particularly intra-period and inter-period features.
We propose a novel model called textbfMuti textbfPeriod textbfSpatial bfbfTemporal textbfMPSTN.
- Score: 4.911867249390154
- License:
- Abstract: Accurate short-term passenger flow prediction of subway stations plays a vital role in enabling subway station personnel to proactively address changes in passenger volume. Despite existing literature in this field, there is a lack of research on effectively integrating features from different periods, particularly intra-period and inter-period features, for subway station passenger flow prediction. In this paper, we propose a novel model called \textbf{M}uti \textbf{P}eriod \textbf{S}patial \textbf{T}emporal \textbf{N}etwork \textbf{MPSTN}) that leverages features from different periods by transforming one-dimensional time series data into two-dimensional matrices based on periods. The folded matrices exhibit structural characteristics similar to images, enabling the utilization of image processing techniques, specifically convolutional neural networks (CNNs), to integrate features from different periods. Therefore, our MPSTN model incorporates a CNN module to extract temporal information from different periods and a graph neural network (GNN) module to integrate spatial information from different stations. We compared our approach with various state-of-the-art methods for spatiotemporal data prediction using a publicly available dataset and achieved minimal prediction errors. The code for our model is publicly available in the following repository: https://github.com/xiannanhuang/MPSTN
Related papers
- ArrivalNet: Predicting City-wide Bus/Tram Arrival Time with Two-dimensional Temporal Variation Modeling [10.788986436621364]
This paper proposes textitArrivalNet, a two-dimensional temporal variation-based multi-step ATP for buses and trams.
It decomposes the one-dimensional temporal sequence into intra-periodic and inter-periodic variations, which can be recast into two-dimensional tensors.
The transformed 2D blocks in different frequencies have an image-like feature representation that enables effective learning with computer vision backbones.
arXiv Detail & Related papers (2024-10-17T10:17:23Z) - Multiple Areal Feature Aware Transportation Demand Prediction [2.996323123990199]
We propose a novel multi-feature-aware graph convolutional recurrent network (ST-MFGCRN) that fuses multiple areal features during-temproal understanding.
We evaluate the proposed model on two real-world transportation datasets.
arXiv Detail & Related papers (2024-08-23T07:51:10Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
Time series prediction is crucial for understanding and forecasting complex dynamics in various domains.
We introduce GridTST, a model that combines the benefits of two approaches using innovative multi-directional attentions.
The model consistently delivers state-of-the-art performance across various real-world datasets.
arXiv Detail & Related papers (2024-05-22T16:41:21Z) - LSTTN: A Long-Short Term Transformer-based Spatio-temporal Neural Network for Traffic Flow Forecasting [4.913321495945671]
Long-term Transformer-based Network (LSTTN) is proposed to learn long- and short-term representations of historical traffic flow.
LSTTN fuses the long-term trend, periodic features and short-term features to obtain the prediction results.
In experiments, LSTTN achieves a minimum of 5.63% improvement and a maximum improvement of 16.78% over baseline models.
arXiv Detail & Related papers (2024-03-25T07:23:23Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
We propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP)
Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series.
Our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns.
arXiv Detail & Related papers (2022-06-18T04:24:36Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z) - Multi-View TRGRU: Transformer based Spatiotemporal Model for Short-Term
Metro Origin-Destination Matrix Prediction [12.626657411944949]
We propose a hy-brid framework Multi-view TRGRU to address OD metro matrix prediction.
In particular, it uses three modules to model three flow change patterns: recent trend, daily trend, weekly trend.
In each module, a multi-view representation based on embedding for each station is constructed and fed into a transformer based re- gated current structure.
arXiv Detail & Related papers (2021-08-09T09:32:42Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.