Accounting for Sycophancy in Language Model Uncertainty Estimation
- URL: http://arxiv.org/abs/2410.14746v1
- Date: Thu, 17 Oct 2024 18:00:25 GMT
- Title: Accounting for Sycophancy in Language Model Uncertainty Estimation
- Authors: Anthony Sicilia, Mert Inan, Malihe Alikhani,
- Abstract summary: We study the relationship between sycophancy and uncertainty estimation for the first time.
We show that user confidence plays a critical role in modulating the effects of sycophancy.
We argue that externalizing both model and user uncertainty can help to mitigate the impacts of sycophancy bias.
- Score: 28.08509288774144
- License:
- Abstract: Effective human-machine collaboration requires machine learning models to externalize uncertainty, so users can reflect and intervene when necessary. For language models, these representations of uncertainty may be impacted by sycophancy bias: proclivity to agree with users, even if they are wrong. For instance, models may be over-confident in (incorrect) problem solutions suggested by a user. We study the relationship between sycophancy and uncertainty estimation for the first time. We propose a generalization of the definition of sycophancy bias to measure downstream impacts on uncertainty estimation, and also propose a new algorithm (SyRoUP) to account for sycophancy in the uncertainty estimation process. Unlike previous works on sycophancy, we study a broad array of user behaviors, varying both correctness and confidence of user suggestions to see how model answers (and their certainty) change. Our experiments across conversation forecasting and question-answering tasks show that user confidence plays a critical role in modulating the effects of sycophancy, and that SyRoUP can better predict these effects. From these results, we argue that externalizing both model and user uncertainty can help to mitigate the impacts of sycophancy bias.
Related papers
- Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Debiasing Recommendation by Learning Identifiable Latent Confounders [49.16119112336605]
Confounding bias arises due to the presence of unmeasured variables that can affect both a user's exposure and feedback.
Existing methods either (1) make untenable assumptions about these unmeasured variables or (2) directly infer latent confounders from users' exposure.
We propose a novel method, i.e., identifiable deconfounder (iDCF), which leverages a set of proxy variables to resolve the aforementioned non-identification issue.
arXiv Detail & Related papers (2023-02-10T05:10:26Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z) - Estimation with Uncertainty via Conditional Generative Adversarial
Networks [3.829070379776576]
We propose a predictive probabilistic neural network model, which corresponds to a different manner of using the generator in conditional Generative Adversarial Network (cGAN)
By reversing the input and output of ordinary cGAN, the model can be successfully used as a predictive model.
In addition, to measure the uncertainty of predictions, we introduce the entropy and relative entropy for regression problems and classification problems.
arXiv Detail & Related papers (2020-07-01T08:54:17Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
We introduce a practical approach for integrating uncertainty estimation into a class of state-of-the-art neural network methods.
We show that our methods enable us to deal gracefully with situations of "no-overlap", common in high-dimensional data.
We show that correctly modeling uncertainty can keep us from giving overconfident and potentially harmful recommendations.
arXiv Detail & Related papers (2020-07-01T00:37:41Z) - Dirichlet uncertainty wrappers for actionable algorithm accuracy
accountability and auditability [0.5156484100374058]
We propose a wrapper that enriches its output prediction with a measure of uncertainty.
Based on the resulting uncertainty measure, we advocate for a rejection system that selects the more confident predictions.
Results demonstrate the effectiveness of the uncertainty computed by the wrapper.
arXiv Detail & Related papers (2019-12-29T11:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.