Isolated Causal Effects of Natural Language
- URL: http://arxiv.org/abs/2410.14812v1
- Date: Fri, 18 Oct 2024 18:32:38 GMT
- Title: Isolated Causal Effects of Natural Language
- Authors: Victoria Lin, Louis-Philippe Morency, Eli Ben-Michael,
- Abstract summary: We introduce a formal estimation framework for isolated causal effects.
We present metrics for evaluating the quality of isolated effect estimation and non-focal language approximation.
- Score: 41.59906798328058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As language technologies become widespread, it is important to understand how variations in language affect reader perceptions -- formalized as the isolated causal effect of some focal language-encoded intervention on an external outcome. A core challenge of estimating isolated effects is the need to approximate all non-focal language outside of the intervention. In this paper, we introduce a formal estimation framework for isolated causal effects and explore how different approximations of non-focal language impact effect estimates. Drawing on the principle of omitted variable bias, we present metrics for evaluating the quality of isolated effect estimation and non-focal language approximation along the axes of fidelity and overlap. In experiments on semi-synthetic and real-world data, we validate the ability of our framework to recover ground truth isolated effects, and we demonstrate the utility of our proposed metrics as measures of quality for both isolated effect estimates and non-focal language approximations.
Related papers
- Data Fusion for Partial Identification of Causal Effects [62.56890808004615]
We propose a novel partial identification framework that enables researchers to answer key questions.<n>Is the causal effect positive or negative? and How severe must assumption violations be to overturn this conclusion?<n>We apply our framework to the Project STAR study, which investigates the effect of classroom size on students' third-grade standardized test performance.
arXiv Detail & Related papers (2025-05-30T07:13:01Z) - Proximal Inference on Population Intervention Indirect Effect [8.296034406842345]
The population intervention indirect effect (PIIE) is a novel mediation effect representing the indirect component of the population intervention effect.
This study extends the PIIE identification to settings where unmeasured confounders influence exposure-outcome, exposure-mediator, and mediator-outcome relationships.
arXiv Detail & Related papers (2025-04-16T08:14:55Z) - PlainQAFact: Automatic Factuality Evaluation Metric for Biomedical Plain Language Summaries Generation [3.8868752812726064]
We introduce PlainQAFact, a framework trained on a fine-grained, human-annotated dataset PlainFact.
PlainQAFact first classifies factuality type and then assesses factuality using a retrieval-augmented QA-based scoring method.
arXiv Detail & Related papers (2025-03-11T20:59:53Z) - On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation [71.72465617754553]
We generate "low-level" sentences that convey object-centric, three-dimensional spatial relationships, incorporate them as additional language priors and evaluate their downstream impact on depth estimation.
Our key finding is that current language-guided depth estimators perform optimally only with scene-level descriptions.
Despite leveraging additional data, these methods are not robust to directed adversarial attacks and decline in performance with an increase in distribution shift.
arXiv Detail & Related papers (2024-04-12T15:35:20Z) - Estimating the Causal Effects of Natural Logic Features in Transformer-Based NLI Models [16.328341121232484]
We apply causal effect estimation strategies to measure the effect of context interventions.
We investigate robustness to irrelevant changes and sensitivity to impactful changes of Transformers.
arXiv Detail & Related papers (2024-04-03T10:22:35Z) - Disentangle Estimation of Causal Effects from Cross-Silo Data [14.684584362172666]
We introduce an innovative disentangle architecture designed to facilitate the seamless cross-silo transmission of model parameters.
We introduce global constraints into the equation to effectively mitigate bias within the various missing domains.
Our method outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-01-04T09:05:37Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - Causal Inference from Text: Unveiling Interactions between Variables [20.677407402398405]
Existing methods only account for confounding covariables that affect both treatment and outcome.
This bias arises from insufficient consideration of non-confounding covariables.
In this work, we aim to mitigate the bias by unveiling interactions between different variables.
arXiv Detail & Related papers (2023-11-09T11:29:44Z) - Text-Transport: Toward Learning Causal Effects of Natural Language [46.75318356800048]
We introduce Text-Transport, a method for estimation of causal effects from natural language under any text distribution.
We use Text-Transport to study a realistic setting--hate speech on social media--in which causal effects do shift significantly between text domains.
arXiv Detail & Related papers (2023-10-31T17:56:51Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - Disentangled Representation for Causal Mediation Analysis [25.114619307838602]
Causal mediation analysis is a method that is often used to reveal direct and indirect effects.
Deep learning shows promise in mediation analysis, but the current methods only assume latent confounders that affect treatment, mediator and outcome simultaneously.
We propose the Disentangled Mediation Analysis Variational AutoEncoder (DMAVAE), which disentangles the representations of latent confounders into three types to accurately estimate the natural direct effect, natural indirect effect and total effect.
arXiv Detail & Related papers (2023-02-19T23:37:17Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
We have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing.
This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure.
We propose a causality-enhanced method called Exponential Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models.
arXiv Detail & Related papers (2022-12-20T18:31:50Z) - Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation [10.75801980090826]
We present three novel Bayesian methods to estimate the expectation of the ultimate treatment effect.
These methods differ on the source of uncertainty considered and allow for combining two sources of data.
We generalize these ideas to the off-policy evaluation framework.
arXiv Detail & Related papers (2022-11-02T23:39:36Z) - The Invariant Ground Truth of Affect [2.570570340104555]
Ground truth of affect is attributed to the affect labels which inadvertently include biases inherent to the subjective nature of emotion and its labeling.
This paper reframes the ways one may obtain a reliable ground truth of affect by transferring aspects of causation theory to affective computing.
We employ causation inspired methods for detecting outliers in affective corpora and building affect models that are robust across participants and tasks.
arXiv Detail & Related papers (2022-10-14T08:26:01Z) - Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment
Analysis [56.84237932819403]
This paper aims to estimate and mitigate the bad effect of textual modality for strong OOD generalization.
Inspired by this, we devise a model-agnostic counterfactual framework for multimodal sentiment analysis.
arXiv Detail & Related papers (2022-07-24T03:57:40Z) - Naturalistic Causal Probing for Morpho-Syntax [76.83735391276547]
We suggest a naturalistic strategy for input-level intervention on real world data in Spanish.
Using our approach, we isolate morpho-syntactic features from counfounders in sentences.
We apply this methodology to analyze causal effects of gender and number on contextualized representations extracted from pre-trained models.
arXiv Detail & Related papers (2022-05-14T11:47:58Z) - Estimating Causal Effects with the Neural Autoregressive Density
Estimator [6.59529078336196]
We use neural autoregressive density estimators to estimate causal effects within the Pearl's do-calculus framework.
We show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables.
arXiv Detail & Related papers (2020-08-17T13:12:38Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z) - Nonparametric inference for interventional effects with multiple
mediators [0.0]
We provide theory that allows for more flexible, possibly machine learning-based, estimation techniques.
We demonstrate multiple robustness properties of the proposed estimators.
Our work thus provides a means of leveraging modern statistical learning techniques in estimation of interventional mediation effects.
arXiv Detail & Related papers (2020-01-16T19:05:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.