SYNOSIS: Image synthesis pipeline for machine vision in metal surface inspection
- URL: http://arxiv.org/abs/2410.14844v1
- Date: Fri, 18 Oct 2024 19:46:12 GMT
- Title: SYNOSIS: Image synthesis pipeline for machine vision in metal surface inspection
- Authors: Juraj Fulir, Natascha Jeziorski, Lovro Bosnar, Hans Hagen, Claudia Redenbach, Petra Gospodnetić, Tobias Herrfurth, Marcus Trost, Thomas Gischkat,
- Abstract summary: We introduce a complete pipeline which describes in detail how to approach image synthesis for surface inspection.
The pipeline is in detail evaluated for milled and sandblasted aluminum surfaces.
- Score: 1.1802456989915404
- License:
- Abstract: The use of machine learning (ML) methods for development of robust and flexible visual inspection system has shown promising. However their performance is highly dependent on the amount and diversity of training data. This is often restricted not only due to costs but also due to a wide variety of defects and product surfaces which occur with varying frequency. As such, one can not guarantee that the acquired dataset contains enough defect and product surface occurrences which are needed to develop a robust model. Using parametric synthetic dataset generation, it is possible to avoid these issues. In this work, we introduce a complete pipeline which describes in detail how to approach image synthesis for surface inspection - from first acquisition, to texture and defect modeling, data generation, comparison to real data and finally use of the synthetic data to train a defect segmentation model. The pipeline is in detail evaluated for milled and sandblasted aluminum surfaces. In addition to providing an in-depth view into each step, discussion of chosen methods, and presentation of ML results, we provide a comprehensive dual dataset containing both real and synthetic images.
Related papers
- AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
Anomaly detection in manufacturing pipelines remains a critical challenge, intensified by the complexity and variability of industrial environments.
This paper introduces AssemAI, an interpretable image-based anomaly detection system tailored for smart manufacturing pipelines.
arXiv Detail & Related papers (2024-08-05T01:50:09Z) - Visual Deformation Detection Using Soft Material Simulation for Pre-training of Condition Assessment Models [3.0477617036157136]
It proposes using Blender, an open-source simulation tool, to create synthetic datasets for machine learning (ML) models.
The process involves translating expert information into shape key parameters to simulate deformations, generating images for both deformed and non-deformed objects.
arXiv Detail & Related papers (2024-04-02T01:58:53Z) - Stochastic Geometry Models for Texture Synthesis of Machined Metallic Surfaces: Sandblasting and Milling [0.7673339435080445]
Training defect detection algorithms for visual surface inspection systems requires a large and representative set of training data.
A digital twin of the object is needed, whose micro-scale surface topography is modeled by texture synthesis models.
arXiv Detail & Related papers (2024-03-20T09:27:49Z) - View-Dependent Octree-based Mesh Extraction in Unbounded Scenes for
Procedural Synthetic Data [71.22495169640239]
Procedural signed distance functions (SDFs) are a powerful tool for modeling large-scale detailed scenes.
We propose OcMesher, a mesh extraction algorithm that efficiently handles high-detail unbounded scenes with perfect view-consistency.
arXiv Detail & Related papers (2023-12-13T18:56:13Z) - ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning [102.46382882098847]
We first investigate the effects of synthetic data in synthetic-to-real novel view synthesis.
We propose to introduce geometry-aware contrastive learning to learn multi-view consistent features with geometric constraints.
Our method can render images with higher quality and better fine-grained details, outperforming existing generalizable novel view synthesis methods in terms of PSNR, SSIM, and LPIPS.
arXiv Detail & Related papers (2023-03-20T12:06:14Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
We introduce MetaGraspNet, a large-scale photo-realistic bin picking dataset constructed via physics-based metaverse synthesis.
The proposed dataset contains 217k RGBD images across 82 different article types, with full annotations for object detection, amodal perception, keypoint detection, manipulation order and ambidextrous grasp labels for a parallel-jaw and vacuum gripper.
We also provide a real dataset consisting of over 2.3k fully annotated high-quality RGBD images, divided into 5 levels of difficulties and an unseen object set to evaluate different object and layout properties.
arXiv Detail & Related papers (2022-08-08T08:15:34Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
We propose two techniques for producing high-quality naturalistic synthetic occluded faces.
We empirically show the effectiveness and robustness of both methods, even for unseen occlusions.
We present two high-resolution real-world occluded face datasets with fine-grained annotations, RealOcc and RealOcc-Wild.
arXiv Detail & Related papers (2022-05-12T17:03:57Z) - Synthetic Data for Model Selection [2.4499092754102874]
We show that synthetic data can be beneficial for model selection.
We introduce a novel method to calibrate the synthetic error estimation to fit that of the real domain.
arXiv Detail & Related papers (2021-05-03T09:52:03Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
Large datasets can be used for improved, targeted training of deep neural networks.
In particular, we make use of a 3D morphable face model for the rendering of multiple 2D images across a dataset of 100 synthetic identities.
arXiv Detail & Related papers (2020-06-21T10:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.