論文の概要: FIT-GNN: Faster Inference Time for GNNs that 'FIT' in Memory Using Coarsening
- arxiv url: http://arxiv.org/abs/2410.15001v3
- Date: Sun, 31 Aug 2025 12:17:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-03 14:24:52.018481
- Title: FIT-GNN: Faster Inference Time for GNNs that 'FIT' in Memory Using Coarsening
- Title(参考訳): FIT-GNN: 粗大化を用いたメモリの「FIT」を考慮したGNNの高速推論時間
- Authors: Shubhajit Roy, Hrriday Ruparel, Kishan Ved, Anirban Dasgupta,
- Abstract要約: 本稿では,グラフ粗化を用いた推論フェーズにおける計算負担を軽減することにより,グラフニューラルネットワーク(GNN)のスケーラビリティを向上させる新しい手法を提案する。
本研究は,グラフ分類やグラフ回帰を含むグラフレベルのタスクに対するグラフ粗化の適用を拡大する。
その結果,提案手法は従来の手法に比べて単一ノード推定時間において桁違いに改善されていることがわかった。
- 参考スコア(独自算出の注目度): 1.1345413192078595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scalability of Graph Neural Networks (GNNs) remains a significant challenge. To tackle this, methods like coarsening, condensation, and computation trees are used to train on a smaller graph, resulting in faster computation. Nonetheless, prior research has not adequately addressed the computational costs during the inference phase. This paper presents a novel approach to improve the scalability of GNNs by reducing computational burden during the inference phase using graph coarsening. We demonstrate two different methods -- Extra Nodes and Cluster Nodes. Our study extends the application of graph coarsening for graph-level tasks, including graph classification and graph regression. We conduct extensive experiments on multiple benchmark datasets to evaluate the performance of our approach. Our results show that the proposed method achieves orders of magnitude improvements in single-node inference time compared to traditional approaches. Furthermore, it significantly reduces memory consumption for node and graph classification and regression tasks, enabling efficient training and inference on low-resource devices where conventional methods are impractical. Notably, these computational advantages are achieved while maintaining competitive performance relative to baseline models.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)のスケーラビリティは依然として大きな課題である。
これを解決するために、粗い木、凝縮木、計算木などの手法が、より小さなグラフでトレーニングするために使われ、計算がより高速になる。
それにもかかわらず、事前の研究は推論フェーズにおける計算コストに十分対応していない。
本稿では,グラフ粗化を用いた推論フェーズにおける計算負担を軽減することにより,GNNのスケーラビリティを向上させる新しい手法を提案する。
エクストラノードとクラスタノードの2つの異なる方法を示します。
本研究は,グラフ分類やグラフ回帰を含むグラフレベルのタスクに対するグラフ粗化の適用を拡大する。
提案手法の有効性を評価するため,複数のベンチマークデータセットについて広範な実験を行った。
提案手法は従来の手法と比較して,単一ノードの推論時間を大幅に改善する。
さらに、ノードやグラフの分類や回帰タスクのメモリ消費を大幅に削減し、従来の手法が実用的でない低リソースデバイスでの効率的なトレーニングと推論を可能にした。
特に、これらの計算上の優位性は、ベースラインモデルに対する競合性能を維持しながら達成される。
関連論文リスト
- Distributed Graph Neural Network Inference With Just-In-Time Compilation For Industry-Scale Graphs [6.924892368183222]
グラフニューラルネットワーク(GNN)は様々な分野で顕著な成果を上げている。
グラフデータのスケールの急激な増加は、GNN推論に重大なパフォーマンスボトルネックをもたらしている。
本稿では,GNNを新しいプログラミングインタフェースで抽象化する分散グラフ学習のための革新的な処理パラダイムを提案する。
論文 参考訳(メタデータ) (2025-03-08T13:26:59Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks [37.41604955004456]
グラフニューラルネットワーク(GNN)はグラフ表現学習において顕著な成功を収めている。
GNNを大規模グラフのアプリケーションに拡張するための様々なサンプリング手法が提案されている。
論文 参考訳(メタデータ) (2024-10-07T18:29:02Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
グラフニューラルネットワーク(GNN)は、非ユークリッドデータセットを扱う学習問題に対して、悪名高い代替手段として登場した。
本研究は,観測トポロジにおける摂動の存在を明示的に考慮した,GNNの堅牢な実装を提案する。
論文 参考訳(メタデータ) (2023-12-11T17:43:57Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
グラフニューラルネットワーク(GNN)のスケーラビリティは、マシンラーニングにおける大きな課題のひとつだ。
本稿では,GNNのスケーラブルなトレーニングにグラフ粗大化を用いることを提案する。
既成の粗大化法を単純に適用すれば,分類精度を著しく低下させることなく,ノード数を最大10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T15:46:17Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。