論文の概要: A Distribution Semantics for Probabilistic Term Rewriting
- arxiv url: http://arxiv.org/abs/2410.15081v3
- Date: Thu, 31 Oct 2024 10:19:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 09:54:41.735058
- Title: A Distribution Semantics for Probabilistic Term Rewriting
- Title(参考訳): 確率的項書き換えのための分布意味論
- Authors: Germán Vidal,
- Abstract要約: 我々は、よく知られた計算形式主義である項書き換えに焦点を当てる。
従来の書き換え規則と確率を組み合わせたシステムを考える。
与えられた削減のために一連の「説明」を計算する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Probabilistic programming is becoming increasingly popular thanks to its ability to specify problems with a certain degree of uncertainty. In this work, we focus on term rewriting, a well-known computational formalism. In particular, we consider systems that combine traditional rewriting rules with probabilities. Then, we define a distribution semantics for such systems that can be used to model the probability of reducing a term to some value. We also show how to compute a set of "explanations" for a given reduction, which can be used to compute its probability. Finally, we illustrate our approach with several examples and outline a couple of extensions that may prove useful to improve the expressive power of probabilistic rewrite systems.
- Abstract(参考訳): 確率的プログラミングは、ある種の不確実性のある問題を特定できる能力によって、ますます人気が高まっている。
本研究では、項書き換え、よく知られた計算形式論に焦点をあてる。
特に,従来の書き換え規則と確率を組み合わせたシステムを考える。
そして、ある項をある値に還元する確率をモデル化するために使用できるようなシステムに対する分布意味論を定義する。
また、与えられた還元の「説明」の集合を計算し、その確率を計算する方法を示す。
最後に,本手法をいくつかの例で概説し,確率的書き換えシステムの表現力向上に役立つ拡張について概説する。
関連論文リスト
- Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - A Heavy-Tailed Algebra for Probabilistic Programming [53.32246823168763]
本稿では,確率変数の尾を解析するための体系的アプローチを提案する。
本稿では,確率型プログラミング言語コンパイラの静的解析(サンプル作成前)において,この手法をどのように利用できるかを示す。
実験結果から,重み付き代数を利用する推論アルゴリズムは,多数の密度モデリングおよび変分推論タスクにおいて優れた性能が得られることを確認した。
論文 参考訳(メタデータ) (2023-06-15T16:37:36Z) - Probabilistic unifying relations for modelling epistemic and aleatoric uncertainty: semantics and automated reasoning with theorem proving [0.3441021278275805]
確率的プログラミングは、一般的なコンピュータプログラミング、統計的推論、形式的意味論を組み合わせたものである。
ProbURelは、Hehnerの予測確率的プログラミングに基づいているが、彼の作品が広く採用されるにはいくつかの障害がある。
コントリビューションには、Unified Theories of Programming(UTP)を使用した関係の形式化や、ブラケット外の確率などが含まれています。
ロボットのローカライゼーションの問題,機械学習の分類,確率ループの終了など,6つの事例で研究成果を実演する。
論文 参考訳(メタデータ) (2023-03-16T23:36:57Z) - $\omega$PAP Spaces: Reasoning Denotationally About Higher-Order,
Recursive Probabilistic and Differentiable Programs [64.25762042361839]
$omega$PAP 空間は表現的微分可能および確率的プログラミング言語についての推論のための空間である。
我々の意味論は、最も実践的な確率的で微分可能なプログラムに意味を割り当てるのに十分である。
確率プログラムのトレース密度関数のほぼすべての微分可能性を確立する。
論文 参考訳(メタデータ) (2023-02-21T12:50:05Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - Consistent Sufficient Explanations and Minimal Local Rules for
explaining regression and classification models [0.0]
我々は確率的十分説明(P-SE)の概念を拡張した
P-SEの要点は、同じ予測を維持する条件確率を計算することである。
我々は、$X$の分布を学ばず、予測を行うモデルも持たない非バイナリ機能に対処する。
論文 参考訳(メタデータ) (2021-11-08T17:27:52Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits [18.740781076082044]
確率的推論の大規模クラスを扱うアプローチの背後にある独立性の仮定を克服する手法を提案する。
ベイズ学習のアルゴリズムは、完全な観察にもかかわらず、スパースから提供します。
そのような回路の各リーフは、不確実な確率を表すエレガントなフレームワークを提供するベータ分散ランダム変数でラベル付けされています。
論文 参考訳(メタデータ) (2021-02-22T10:03:15Z) - Stochastically Differentiable Probabilistic Programs [18.971852464650144]
離散確率変数の存在は、多くの基本的な勾配に基づく推論エンジンを禁止している。
我々はマルコフ・チェイン・モンテカルロのアルゴリズム群を用いて,このようなプログラムにおいて推論を効率的かつ堅牢に実行するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-02T08:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。