論文の概要: Integrating Belief Domains into Probabilistic Logic Programs
- arxiv url: http://arxiv.org/abs/2507.17291v1
- Date: Wed, 23 Jul 2025 07:52:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.906871
- Title: Integrating Belief Domains into Probabilistic Logic Programs
- Title(参考訳): 確率論理プログラムへの信念領域の統合
- Authors: Damiano Azzolini, Fabrizio Riguzzi, Theresa Swift,
- Abstract要約: 本稿では,分散セマンティックスを拡張した区間型容量論理プログラムを提案する。
これは、実用アプリケーションで実現可能な新しいフレームワークの特性を記述している。
- 参考スコア(独自算出の注目度): 0.16385815610837165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic Logic Programming (PLP) under the Distribution Semantics is a leading approach to practical reasoning under uncertainty. An advantage of the Distribution Semantics is its suitability for implementation as a Prolog or Python library, available through two well-maintained implementations, namely ProbLog and cplint/PITA. However, current formulations of the Distribution Semantics use point-probabilities, making it difficult to express epistemic uncertainty, such as arises from, for example, hierarchical classifications from computer vision models. Belief functions generalize probability measures as non-additive capacities, and address epistemic uncertainty via interval probabilities. This paper introduces interval-based Capacity Logic Programs based on an extension of the Distribution Semantics to include belief functions, and describes properties of the new framework that make it amenable to practical applications.
- Abstract(参考訳): 分散セマンティックスの下での確率論的論理プログラミング(PLP)は、不確実性の下での実践的推論における主要なアプローチである。
Distribution Semanticsの利点は、PrologやPythonライブラリとして実装するのに適しており、ProbLogとcplint/PITAという2つのよく保守された実装を通して利用できることである。
しかし、分布セマンティックスの現在の定式化は点確率を使い、例えばコンピュータビジョンモデルからの階層的分類から生じるような、てんかんの不確実性を表現することは困難である。
信念関数は、確率測度を非付加的な容量として一般化し、間隔確率によるてんかんの不確実性に対処する。
本稿では,分散セマンティックスを拡張したインターバルベースの能力論理プログラムについて紹介し,実践的な応用を実現するための新しいフレームワークの特性について述べる。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - smProbLog: Stable Model Semantics in ProbLog for Probabilistic
Argumentation [19.46250467634934]
本稿では,確率論的論理プログラミング(PLP)のセマンティクスにおいて,確率論的議論フレームワークを表すプログラムが共通の仮定を満たさないことを示す。
第二の貢献は、確率的事実の選択が論理的原子の真理割り当てを一意に決定しないプログラムのための新しいPLP意味論である。
3つ目のコントリビューションは、このセマンティクスをサポートするPLPシステムの実装である。
論文 参考訳(メタデータ) (2023-04-03T10:59:25Z) - $\omega$PAP Spaces: Reasoning Denotationally About Higher-Order,
Recursive Probabilistic and Differentiable Programs [64.25762042361839]
$omega$PAP 空間は表現的微分可能および確率的プログラミング言語についての推論のための空間である。
我々の意味論は、最も実践的な確率的で微分可能なプログラムに意味を割り当てるのに十分である。
確率プログラムのトレース密度関数のほぼすべての微分可能性を確立する。
論文 参考訳(メタデータ) (2023-02-21T12:50:05Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Checking Trustworthiness of Probabilistic Computations in a Typed Natural Deduction System [0.0]
TPTNDの導出性は、与えられたカテゴリー分布から特定の周波数で$n$サンプルを抽出する過程として解釈される。
本稿では,TPTND のセマンティクスを解析し,そのセマンティクスについて述べる。
構造的・メタセオレティックな性質を概説し、特に「進化」と「論理的規則」をどの用語で表すかを確立する能力に焦点をあてる。
論文 参考訳(メタデータ) (2022-06-26T17:55:32Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - Logical Credal Networks [87.25387518070411]
本稿では,論理と確率を組み合わせた先行モデルの多くを一般化した表現的確率論的論理である論理的クレダルネットワークを紹介する。
本稿では,不確実性のあるマスターミンドゲームを解くこと,クレジットカード詐欺を検出することを含む,最大後部推論タスクの性能について検討する。
論文 参考訳(メタデータ) (2021-09-25T00:00:47Z) - Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits [18.740781076082044]
確率的推論の大規模クラスを扱うアプローチの背後にある独立性の仮定を克服する手法を提案する。
ベイズ学習のアルゴリズムは、完全な観察にもかかわらず、スパースから提供します。
そのような回路の各リーフは、不確実な確率を表すエレガントなフレームワークを提供するベータ分散ランダム変数でラベル付けされています。
論文 参考訳(メタデータ) (2021-02-22T10:03:15Z) - An asymptotic analysis of probabilistic logic programming with
implications for expressing projective families of distributions [0.0]
分布意味論に基づく全ての確率論理プログラムは確率論理プログラムと関係論的に等価であることを示す。
範囲制限論理プログラムは、量子化子フリーな理論に対応し、量子化子結果が有用である。
論文 参考訳(メタデータ) (2021-02-17T14:07:16Z) - Paraconsistent Foundations for Probabilistic Reasoning, Programming and
Concept Formation [0.0]
4値のパラ一貫性真理値(ここでは「pビット」と呼ばれる)は、確率論的論理とプログラミングと概念形成の高度AI関連形式の概念的、数学的、実践的な基礎として機能する。
構成的双対(CD)論理に従って動作している4値のpビットの平均平均値と再正規化がPLN(Probabilistic Logic Networks)の強度と自信の真理値をもたらすことが示されている。
論文 参考訳(メタデータ) (2020-12-28T20:14:49Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。