Simulating and investigating various dynamic aspects of $\rm{H}_2\rm{O}$-related hydrogen bond model
- URL: http://arxiv.org/abs/2410.15121v2
- Date: Sat, 16 Nov 2024 07:03:46 GMT
- Title: Simulating and investigating various dynamic aspects of $\rm{H}_2\rm{O}$-related hydrogen bond model
- Authors: Jiangchuan You, Ran Chen, Wanshun Li, Hui-hui Miao, Yuri Igorevich Ozhigov,
- Abstract summary: A simple $rmHrmO$-related hydrogen bond model, modified from the Jaynes-Cummings model, is proposed.
The formation and breaking processes of hydrogen bond are accompanied by the creation and annihilation of the thermal phonon of the medium.
- Score: 2.067188682696963
- License:
- Abstract: A simple $\rm{H}_2\rm{O}$-related hydrogen bond model, modified from the Jaynes-Cummings model, is proposed and its various dynamic aspects are investigated theoretically. In this model, the formation and breaking processes of hydrogen bond are accompanied by the creation and annihilation of the thermal phonon of the medium. A number of simplifying assumptions about the dynamics of the molecules involved are used. Rotating wave approximation is applied under consideration of the strong-coupling condition. Dissipative dynamics under the Markovian approximation is obtained through solving the quantum master equation - Lindbladian. The probabilities of reaction channels involving hydrogen bond depending on the parameters of the external environment, are obtained. Differences between unitary and dissipative evolutions are discussed. Consideration is given to the effect of all kinds of potential interactions and dissipations on evolution. Consideration is also given to the reverse processes (inflows) of dissipations. The results show that the magnitude changes of the interactions and dissipations have a slight effect on the formation of hydrogen bond, but the variation of the inflows significantly affects the formation of hydrogen bond. According to the findings, the dynamics of $\rm{H}_2\rm{O}$-related hydrogen bond model can be controlled by selectively choosing system parameters. The results will be used as a basis to extend the research to more complex chemical and biological models in the future.
Related papers
- A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device [32.65699367892846]
We investigate the feasibility of simulating reaction dynamics using a bosonic superconducting Kerr-cat device.
This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of non-reactive degrees of freedom.
arXiv Detail & Related papers (2024-09-19T22:43:08Z) - Investigating entropic dynamics of multiqubit cavity QED system [0.0]
Entropic dynamics of a multiqubit cavity quantum electrodynamics system is simulated and various aspects of entropy are explored.
In the modified version of the Tavis-Cummings-Hubbard model, atoms are held in optical cavities through optical tweezers.
The interaction of atom with the cavity results in different electronic transitions and the creation and annihilation of corresponding types of photon.
arXiv Detail & Related papers (2024-05-09T11:51:00Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Cavity-Catalyzed Hydrogen Transfer Dynamics in an Entangled Molecular
Ensemble under Vibrational Strong Coupling [0.0]
We numerically solve the Schr"odinger equation to study the cavity-induced quantum dynamics in an ensemble of molecules.
We show that the cavity indeed enforces hydrogen transfer from an enol to an enethiol configuration with transfer rates significantly increasing with light-matter interaction strength.
A non-trivial dependence of the dynamics on ensemble size is found, clearly beyond scaled single-molecule models.
arXiv Detail & Related papers (2023-01-10T16:58:57Z) - Using a modified version of the Tavis-Cummings-Hubbard model to simulate
the formation of neutral hydrogen molecule [0.0]
finite-dimensional chemistry model with two two-level artificial atoms on quantum dots positioned in optical cavities is described.
The association of atoms in the molecule is simulated through a quantum master equation.
Investigated are the effects of temperature variation of various photonic modes on quantum evolution and neutral hydrogen molecule formation.
arXiv Detail & Related papers (2022-09-20T10:38:27Z) - Deep Variational Free Energy Approach to Dense Hydrogen [16.67522927286118]
We develop a deep generative model-based variational free energy approach to the equations of state of dense hydrogen.
Direct access to the entropy and free energy of dense hydrogen opens new opportunities in planetary modeling and high-pressure physics research.
arXiv Detail & Related papers (2022-09-13T15:47:21Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.