Simulation-Based Optimistic Policy Iteration For Multi-Agent MDPs with Kullback-Leibler Control Cost
- URL: http://arxiv.org/abs/2410.15156v1
- Date: Sat, 19 Oct 2024 17:00:23 GMT
- Title: Simulation-Based Optimistic Policy Iteration For Multi-Agent MDPs with Kullback-Leibler Control Cost
- Authors: Khaled Nakhleh, Ceyhun Eksin, Sabit Ekin,
- Abstract summary: This paper proposes an agent-based optimistic policy (OPI) scheme for learning stationary optimal policies in Markov Decision Processes (MDPs)
The proposed scheme consists of a greedy policy improvement step followed by an m-step temporal difference (TD) policy evaluation step.
We show that both the synchronous (entire state space evaluation) and asynchronous (a uniformly sampled set of substates) versions of the OPI scheme converge to the optimal value function and an optimal joint policy rollout.
- Score: 3.9052860539161918
- License:
- Abstract: This paper proposes an agent-based optimistic policy iteration (OPI) scheme for learning stationary optimal stochastic policies in multi-agent Markov Decision Processes (MDPs), in which agents incur a Kullback-Leibler (KL) divergence cost for their control efforts and an additional cost for the joint state. The proposed scheme consists of a greedy policy improvement step followed by an m-step temporal difference (TD) policy evaluation step. We use the separable structure of the instantaneous cost to show that the policy improvement step follows a Boltzmann distribution that depends on the current value function estimate and the uncontrolled transition probabilities. This allows agents to compute the improved joint policy independently. We show that both the synchronous (entire state space evaluation) and asynchronous (a uniformly sampled set of substates) versions of the OPI scheme with finite policy evaluation rollout converge to the optimal value function and an optimal joint policy asymptotically. Simulation results on a multi-agent MDP with KL control cost variant of the Stag-Hare game validates our scheme's performance in terms of minimizing the cost return.
Related papers
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Landscape of Policy Optimization for Finite Horizon MDPs with General State and Action [10.219627570276689]
We develop a framework for a class of Markov Decision Processes with general state and spaces.
We show that gradient methods converge to the globally optimal policy with a nonasymptomatic condition.
Our result establishes first complexity for multi-period inventory systems.
arXiv Detail & Related papers (2024-09-25T17:56:02Z) - Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - On the Global Convergence of Policy Gradient in Average Reward Markov
Decision Processes [50.68789924454235]
We present the first finite time global convergence analysis of policy gradient in the context of average reward Markov decision processes (MDPs)
Our analysis shows that the policy gradient iterates converge to the optimal policy at a sublinear rate of $Oleft(frac1Tright),$ which translates to $Oleft(log(T)right)$ regret, where $T$ represents the number of iterations.
arXiv Detail & Related papers (2024-03-11T15:25:03Z) - A safe exploration approach to constrained Markov decision processes [7.036452261968767]
We consider discounted infinite horizon constrained Markov decision processes (CMDPs)
The goal is to find an optimal policy that maximizes the expected cumulative reward subject to expected cumulative constraints.
Motivated by the application of CMDPs in online learning of safety-critical systems, we focus on developing a model-free and simulator-free algorithm.
arXiv Detail & Related papers (2023-12-01T13:16:39Z) - $K$-Nearest-Neighbor Resampling for Off-Policy Evaluation in Stochastic
Control [0.6906005491572401]
We propose a novel $K$-nearest neighbor reparametric procedure for estimating the performance of a policy from historical data.
Our analysis allows for the sampling of entire episodes, as is common practice in most applications.
Compared to other OPE methods, our algorithm does not require optimization, can be efficiently implemented via tree-based nearest neighbor search and parallelization, and does not explicitly assume a parametric model for the environment's dynamics.
arXiv Detail & Related papers (2023-06-07T23:55:12Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
Robust decision processes (MDPs) provide a framework to model decision problems where the system dynamics are changing or only partially known.
Recent work established the equivalence between texttts rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs.
In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators.
arXiv Detail & Related papers (2022-05-28T04:05:20Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
We consider an improper reinforcement learning setting where the learner is given M base controllers for an unknown Markov Decision Process.
We propose a gradient-based approach that operates over a class of improper mixtures of the controllers.
arXiv Detail & Related papers (2021-02-16T14:53:55Z) - Projection-Based Constrained Policy Optimization [34.555500347840805]
We propose a new algorithm, Projection-Based Constrained Policy Optimization (PCPO)
PCPO achieves more than 3.5 times less constraint violation and around 15% higher reward compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-07T04:22:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.