論文の概要: Explaining Graph Neural Networks with Large Language Models: A Counterfactual Perspective for Molecular Property Prediction
- arxiv url: http://arxiv.org/abs/2410.15165v1
- Date: Sat, 19 Oct 2024 17:34:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:42.510929
- Title: Explaining Graph Neural Networks with Large Language Models: A Counterfactual Perspective for Molecular Property Prediction
- Title(参考訳): 大規模言語モデルを用いたグラフニューラルネットワークの解説:分子特性予測のための対実的視点
- Authors: Yinhan He, Zaiyi Zheng, Patrick Soga, Yaozhen Zhu, yushun Dong, Jundong Li,
- Abstract要約: Graph Counterfactual Explanation (GCE)は、GNN透過性を改善するための有望なアプローチとして登場した。
本稿では,分子特性予測のための大規模言語モデル (LLM) のパワーを解き放つ新しいGCE法 LLM-GCE を提案する。
- 参考スコア(独自算出の注目度): 41.39277277686706
- License:
- Abstract: In recent years, Graph Neural Networks (GNNs) have become successful in molecular property prediction tasks such as toxicity analysis. However, due to the black-box nature of GNNs, their outputs can be concerning in high-stakes decision-making scenarios, e.g., drug discovery. Facing such an issue, Graph Counterfactual Explanation (GCE) has emerged as a promising approach to improve GNN transparency. However, current GCE methods usually fail to take domain-specific knowledge into consideration, which can result in outputs that are not easily comprehensible by humans. To address this challenge, we propose a novel GCE method, LLM-GCE, to unleash the power of large language models (LLMs) in explaining GNNs for molecular property prediction. Specifically, we utilize an autoencoder to generate the counterfactual graph topology from a set of counterfactual text pairs (CTPs) based on an input graph. Meanwhile, we also incorporate a CTP dynamic feedback module to mitigate LLM hallucination, which provides intermediate feedback derived from the generated counterfactuals as an attempt to give more faithful guidance. Extensive experiments demonstrate the superior performance of LLM-GCE. Our code is released on https://github.com/YinhanHe123/new\_LLM4GNNExplanation.
- Abstract(参考訳): 近年、グラフニューラルネットワーク(GNN)は毒性分析などの分子特性予測タスクに成功している。
しかしながら、GNNのブラックボックスの性質のため、そのアウトプットは、例えば薬物発見のような高い意思決定シナリオにおいて関係する可能性がある。
このような問題に直面したグラフ対実説明(GCE)は、GNN透明性を改善するための有望なアプローチとして登場した。
しかし、現在のGCE法はドメイン固有の知識を考慮に入れず、その結果、人間が容易に理解できないアウトプットが生まれる。
この課題に対処するために、分子特性予測のためのGNNを説明するために、大規模言語モデル(LLM)のパワーを解き放つ新しいGCE法 LLM-GCE を提案する。
具体的には、オートエンコーダを用いて、入力グラフに基づいて、対実テキストペア(CTP)の集合から対実グラフトポロジを生成する。
また,LCM幻覚を緩和するために,CTP動的フィードバックモジュールも組み込まれている。
大規模実験によりLLM-GCEの性能が向上した。
私たちのコードはhttps://github.com/YinhanHe123/new\_LLM4GNNExplanationで公開されています。
関連論文リスト
- Global Graph Counterfactual Explanation: A Subgraph Mapping Approach [54.42907350881448]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションに広くデプロイされている。
対実的説明は、GNN予測を変える入力グラフ上で最小の摂動を見つけることを目的としている。
我々は,グローバルレベルのグラフ対実的説明法であるGlobalGCEを提案する。
論文 参考訳(メタデータ) (2024-10-25T21:39:05Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
論文 参考訳(メタデータ) (2024-05-29T14:28:08Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
グラフニューラルネットワーク(GNN)の関数空間におけるトレーニングダイナミクスについて検討する。
GNNの勾配勾配勾配最適化は暗黙的にグラフ構造を利用して学習関数を更新する。
この発見は、学習したGNN関数が一般化した時期と理由に関する新たな解釈可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-08T10:19:56Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Global Counterfactual Explainer for Graph Neural Networks [8.243944711755617]
グラフニューラルネットワーク(GNN)は、計算生物学、自然言語処理、コンピュータセキュリティなど、さまざまな分野に応用されている。
GNNはブラックボックス機械学習モデルであるため、GNNの予測を説明する必要性が高まっている。
既存のGNNの非現実的説明法は、インスタンス固有の局所的推論に限られる。
論文 参考訳(メタデータ) (2022-10-21T02:46:35Z) - GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks [25.94529851210956]
本稿では,異なるグラフニューラルネットワーク(GNN)に対して,メッセージパッシング方式であるGNNInterpreterに従うモデルに依存しないモデルレベルの説明手法を提案する。
GNNInterpreterは、GNNが検出しようとする最も識別性の高いグラフパターンを生成する確率的生成グラフ分布を学習する。
既存の研究と比較すると、GNNInterpreterはノードとエッジの異なるタイプの説明グラフを生成する際に、より柔軟で計算的に効率的である。
論文 参考訳(メタデータ) (2022-09-15T07:45:35Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - Higher-Order Explanations of Graph Neural Networks via Relevant Walks [3.1510406584101776]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを予測するための一般的なアプローチである。
本稿では,GNNを高次展開を用いて自然に説明できることを示す。
本稿では,テキストデータの感情分析,量子化学における構造・不適切な関係,画像分類に関する実践的な知見を抽出する。
論文 参考訳(メタデータ) (2020-06-05T17:59:14Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。