論文の概要: Tensor-Fused Multi-View Graph Contrastive Learning
- arxiv url: http://arxiv.org/abs/2410.15247v1
- Date: Sun, 20 Oct 2024 01:40:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:17.583100
- Title: Tensor-Fused Multi-View Graph Contrastive Learning
- Title(参考訳): テンソル融合多視点グラフコントラスト学習
- Authors: Yujia Wu, Junyi Mo, Elynn Chen, Yuzhou Chen,
- Abstract要約: グラフコントラッシブラーニング(GCL)は、グラフニューラルネットワーク(GNN)の機能を強化し、ラベルのないグラフ構造化データからリッチな表現を学習するための、有望なアプローチとして登場した。
現在のGCLモデルは、計算要求と限られた機能利用の課題に直面している。
提案するTensorMV-GCLは,拡張された永続的ホモロジーをGCL表現と統合し,マルチスケールな特徴抽出を容易にする新しいフレームワークである。
- 参考スコア(独自算出の注目度): 12.412040359604163
- License:
- Abstract: Graph contrastive learning (GCL) has emerged as a promising approach to enhance graph neural networks' (GNNs) ability to learn rich representations from unlabeled graph-structured data. However, current GCL models face challenges with computational demands and limited feature utilization, often relying only on basic graph properties like node degrees and edge attributes. This constrains their capacity to fully capture the complex topological characteristics of real-world phenomena represented by graphs. To address these limitations, we propose Tensor-Fused Multi-View Graph Contrastive Learning (TensorMV-GCL), a novel framework that integrates extended persistent homology (EPH) with GCL representations and facilitates multi-scale feature extraction. Our approach uniquely employs tensor aggregation and compression to fuse information from graph and topological features obtained from multiple augmented views of the same graph. By incorporating tensor concatenation and contraction modules, we reduce computational overhead by separating feature tensor aggregation and transformation. Furthermore, we enhance the quality of learned topological features and model robustness through noise-injected EPH. Experiments on molecular, bioinformatic, and social network datasets demonstrate TensorMV-GCL's superiority, outperforming 15 state-of-the-art methods in graph classification tasks across 9 out of 11 benchmarks while achieving comparable results on the remaining two. The code for this paper is publicly available at https://github.com/CS-SAIL/Tensor-MV-GCL.git.
- Abstract(参考訳): グラフコントラスト学習(GCL)は、グラフニューラルネットワーク(GNN)の機能を強化し、ラベルのないグラフ構造化データからリッチな表現を学習するための、有望なアプローチとして登場した。
しかし、現在のGCLモデルは計算要求と限られた機能利用の課題に直面しており、しばしばノード次数やエッジ属性のような基本的なグラフ特性にのみ依存する。
これにより、グラフで表される実世界の現象の複雑な位相的特性を完全に捉える能力が制限される。
これらの制約に対処するために,拡張持続ホモロジー(EPH)とGCL表現を統合し,マルチスケールの特徴抽出を容易にする新しいフレームワークであるTensor-Fused Multi-View Graph Contrastive Learning (TensorMV-GCL)を提案する。
提案手法はテンソルアグリゲーションと圧縮を用いて,グラフからの情報と,同じグラフの複数の拡張ビューから得られるトポロジ的特徴を融合する。
テンソル連結加群と収縮加群を組み込むことで,特徴テンソル凝集と変換を分離することにより計算オーバーヘッドを低減する。
さらに、ノイズ注入EPHによる学習トポロジカル特徴の質の向上とロバスト性をモデル化する。
分子、バイオインフォマティクス、ソーシャルネットワークデータセットの実験では、TensorMV-GCLの優位性が示され、11のベンチマークのうち9のグラフ分類タスクにおいて15の最先端メソッドよりも優れ、残りの2つのベンチマークでは同等の結果が得られた。
本論文のコードはhttps://github.com/CS-SAIL/Tensor-MV-GCL.gitで公開されている。
関連論文リスト
- Dynamic and Textual Graph Generation Via Large-Scale LLM-based Agent Simulation [70.60461609393779]
GraphAgent-Generator (GAG) は動的グラフ生成のための新しいシミュレーションベースのフレームワークである。
本フレームワークは,確立されたネットワーク科学理論において,7つのマクロレベルの構造特性を効果的に再現する。
最大10万近いノードと1000万のエッジを持つグラフの生成をサポートし、最低速度は90.4%である。
論文 参考訳(メタデータ) (2024-10-13T12:57:08Z) - GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning [0.0]
グラフ表現学習は、ノードをベクトル表現にマッピングする際にグラフトポロジを保存する強力なツールとして登場した。
現在のグラフニューラルネットワークモデルは、広範なラベル付きデータを必要とするという課題に直面している。
多次元コントラスト学習によるグラフ表現埋め込みを提案する。
論文 参考訳(メタデータ) (2024-09-12T03:09:05Z) - TopoGCL: Topological Graph Contrastive Learning [32.993034801654105]
グラフコントラスト学習(GCL)は、グラフニューラルネットワーク(GNN)の強みを活かす新しい概念として最近登場した。
グラフ上の位相不変性と拡張持続性の概念をGCLに導入する。
以上の結果から,新しいトポロジカルグラフコントラスト学習(TopoGCL)モデルは,12の考察データセットのうち11の教師なしグラフ分類において,大幅な性能向上を実現し,ノイズのあるシナリオ下で頑健性を示した。
論文 参考訳(メタデータ) (2024-06-25T03:35:20Z) - Graph Contrastive Learning with Cohesive Subgraph Awareness [34.76555185419192]
グラフコントラスト学習(GCL)は、多様なグラフの表現を学習するための最先端の戦略として登場した。
グラフの増大と学習過程におけるサブグラフの認識は、GCLの性能を高める可能性があると論じる。
我々はCTAugと呼ばれる新しい統合フレームワークを提案し、結合認識を様々な既存のGCLメカニズムにシームレスに統合する。
論文 参考訳(メタデータ) (2024-01-31T03:51:30Z) - Tensor-view Topological Graph Neural Network [16.433092191206534]
グラフニューラルネットワーク(GNN)は最近、グラフ学習において注目を集めている。
既存のGNNは、各ノード周辺の非常に限られた地区からのローカル情報のみを使用する。
本稿では,単純かつ効果的な深層学習のクラスであるTopological Graph Neural Network (TTG-NN)を提案する。
実データ実験により,提案したTTG-NNは,グラフベンチマークにおいて20の最先端手法より優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:55:01Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Multivariate Time Series Classification with Hierarchical Variational
Graph Pooling [23.66868187446734]
既存のディープラーニングに基づくMTSC技術は、主に単一時系列の時間依存性に関係している。
MTSの表現的グローバル表現を得るために,グラフプーリングに基づく新しいフレームワークMTPoolを提案する。
10のベンチマークデータセットの実験では、MTSCタスクでMTPoolが最先端の戦略を上回っている。
論文 参考訳(メタデータ) (2020-10-12T12:36:47Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。