LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting
- URL: http://arxiv.org/abs/2410.15286v1
- Date: Sun, 20 Oct 2024 04:53:50 GMT
- Title: LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting
- Authors: Te Li, Mengze Zhang, Yan Zhou,
- Abstract summary: This paper introduces a novel approach that combines deep learning techniques with environmental decision support systems.
The model integrates advanced deep learning techniques, including LSTM and Transformer, and PSO algorithm for parameter optimization.
Results show that our model achieves substantial improvements across various metrics.
- Score: 5.240979281331069
- License:
- Abstract: Against the backdrop of increasingly severe global environmental changes, accurately predicting and meeting renewable energy demands has become a key challenge for sustainable business development. Traditional energy demand forecasting methods often struggle with complex data processing and low prediction accuracy. To address these issues, this paper introduces a novel approach that combines deep learning techniques with environmental decision support systems. The model integrates advanced deep learning techniques, including LSTM and Transformer, and PSO algorithm for parameter optimization, significantly enhancing predictive performance and practical applicability. Results show that our model achieves substantial improvements across various metrics, including a 30% reduction in MAE, a 20% decrease in MAPE, a 25% drop in RMSE, and a 35% decline in MSE. These results validate the model's effectiveness and reliability in renewable energy demand forecasting. This research provides valuable insights for applying deep learning in environmental decision support systems.
Related papers
- TRIZ Method for Urban Building Energy Optimization: GWO-SARIMA-LSTM Forecasting model [0.34028430825850625]
This study proposes a hybrid deep learning model that combines TRIZ innovation theory with GWO, SARIMA and LSTM to improve the accuracy of building energy consumption prediction.
Our experiments demonstrate a significant 15% reduction in prediction error compared to existing models.
arXiv Detail & Related papers (2024-10-20T04:46:42Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - EcoMLS: A Self-Adaptation Approach for Architecting Green ML-Enabled Systems [1.0923877073891446]
Self-adaptation techniques, recognized for their potential in energy savings within software systems, have yet to be extensively explored in Machine Learning-Enabled Systems.
This research underscores the feasibility of enhancing MLS sustainability through intelligent runtime adaptations.
arXiv Detail & Related papers (2024-04-17T14:12:47Z) - Towards Green AI in Fine-tuning Large Language Models via Adaptive
Backpropagation [58.550710456745726]
Fine-tuning is the most effective way of adapting pre-trained large language models (LLMs) to downstream applications.
Existing techniques on efficient fine-tuning can only achieve limited reduction of such FLOPs.
We present GreenTrainer, a new technique that adaptively evaluates different tensors' backpropagation costs and contributions to the fine-tuned model accuracy.
arXiv Detail & Related papers (2023-09-22T21:55:18Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - End-to-End Learning with Multiple Modalities for System-Optimised
Renewables Nowcasting [0.0]
This paper investigates the multi-modal (MM) learning and end-to-end (E2E) learning for nowcasting renewable power as an intermediate to energy management systems.
MM combines features from all-sky imagery and meteorological sensor data as two modalities to predict renewable power generation.
For the first time, MM is combined with E2E training of the model that minimises the expected total system cost.
arXiv Detail & Related papers (2023-04-14T14:20:55Z) - Uncovering Energy-Efficient Practices in Deep Learning Training:
Preliminary Steps Towards Green AI [8.025202812165412]
We consider energy consumption as a metric of equal importance to accuracy and to reduce any irrelevant tasks or energy usage.
We examine the training stage of the deep learning pipeline from a sustainability perspective.
We highlight innovative and promising energy-efficient practices for training deep learning models.
arXiv Detail & Related papers (2023-03-24T12:48:21Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.