Building Energy Efficiency through Advanced Regression Models and Metaheuristic Techniques for Sustainable Management
- URL: http://arxiv.org/abs/2305.08886v2
- Date: Wed, 20 Mar 2024 18:29:53 GMT
- Title: Building Energy Efficiency through Advanced Regression Models and Metaheuristic Techniques for Sustainable Management
- Authors: Hamed Khosravi, Hadi Sahebi, Rahim khanizad, Imtiaz Ahmed,
- Abstract summary: This research leverages extensive raw data from building infrastructures to uncover energy consumption patterns.
We investigate the factors influencing energy efficiency and cost reduction in buildings, utilizing Lasso Regression, Decision Tree, and Random Forest models.
We apply metaheuristic techniques to enhance the Decision Tree algorithm, resulting in improved predictive precision.
- Score: 3.6811136816751513
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the context of global sustainability, buildings are significant consumers of energy, emphasizing the necessity for innovative strategies to enhance efficiency and reduce environmental impact. This research leverages extensive raw data from building infrastructures to uncover energy consumption patterns and devise strategies for optimizing resource use. We investigate the factors influencing energy efficiency and cost reduction in buildings, utilizing Lasso Regression, Decision Tree, and Random Forest models for accurate energy use forecasting. Our study delves into the factors affecting energy utilization, focusing on primary fuel and electrical energy, and discusses the potential for substantial cost savings and environmental benefits. Significantly, we apply metaheuristic techniques to enhance the Decision Tree algorithm, resulting in improved predictive precision. This enables a more nuanced understanding of the characteristics of buildings with high and low energy efficiency potential. Our findings offer practical insights for reducing energy consumption and operational costs, contributing to the broader goals of sustainable development and cleaner production. By identifying key drivers of energy use in buildings, this study provides a valuable framework for policymakers and industry stakeholders to implement cleaner and more sustainable energy practices.
Related papers
- Just In Time Transformers [2.7350304370706797]
JITtrans is a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy.
Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems.
arXiv Detail & Related papers (2024-10-22T10:33:00Z) - TRIZ Method for Urban Building Energy Optimization: GWO-SARIMA-LSTM Forecasting model [0.34028430825850625]
This study proposes a hybrid deep learning model that combines TRIZ innovation theory with GWO, SARIMA and LSTM to improve the accuracy of building energy consumption prediction.
Our experiments demonstrate a significant 15% reduction in prediction error compared to existing models.
arXiv Detail & Related papers (2024-10-20T04:46:42Z) - AI-Driven Approaches for Optimizing Power Consumption: A Comprehensive Survey [0.0]
Reduced environmental effect, lower operating costs, and a stable and sustainable energy supply are the main reasons why power optimization is important.
Power optimization and artificial intelligence (AI) integration are essential to changing the way energy is produced, used, and distributed.
Real-time monitoring and analysis of power usage trends is made possible by AI-driven algorithms and predictive analytics.
arXiv Detail & Related papers (2024-06-22T04:42:37Z) - Watt For What: Rethinking Deep Learning's Energy-Performance Relationship [13.505163099299025]
We study the trade-off between model accuracy and electricity consumption of deep learning models.
By evaluating accuracy per unit of electricity consumed, we demonstrate how smaller, more energy-efficient models can significantly expedite research.
This research contributes to a more equitable research landscape, where smaller entities can compete effectively with larger counterparts.
arXiv Detail & Related papers (2023-10-10T11:08:31Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Compute and Energy Consumption Trends in Deep Learning Inference [67.32875669386488]
We study relevant models in the areas of computer vision and natural language processing.
For a sustained increase in performance we see a much softer growth in energy consumption than previously anticipated.
arXiv Detail & Related papers (2021-09-12T09:40:18Z) - Data-driven optimization of building layouts for energy efficiency [0.0]
We introduce methods for relating lighting zone energy to zone-level occupant dynamics, simulating energy consumption of a lighting system based on this relationship.
We find in a case study that nonhomogeneous behavior among occupant schedules positively correlates with the energy consumption of a highly controllable lighting system.
We additionally find through data-driven simulation that the na"ive clustering-based optimization and the genetic algorithm produce layouts that reduce energy consumption by roughly 5% compared to the existing layout of a real office space comprised of 165 occupants.
arXiv Detail & Related papers (2020-07-24T22:58:16Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.