論文の概要: Contextual Augmented Multi-Model Programming (CAMP): A Hybrid Local-Cloud Copilot Framework
- arxiv url: http://arxiv.org/abs/2410.15285v1
- Date: Sun, 20 Oct 2024 04:51:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:48.632316
- Title: Contextual Augmented Multi-Model Programming (CAMP): A Hybrid Local-Cloud Copilot Framework
- Title(参考訳): コンテキスト拡張型マルチモデルプログラミング(CAMP) - ハイブリッドローカルクラウドコパイロットフレームワーク
- Authors: Yuchen Wang, Shangxin Guo, Chee Wei Tan,
- Abstract要約: 本稿では、Retrieval-Augmented Generation(RAG)を用いた局所モデルからなるマルチモデルAI支援プログラミングフレームワークであるCAMPを提案する。
RAGは、コンテキスト認識プロンプト構築を容易にするために、クラウドモデルからコンテキスト情報を取得する。
この方法論は、Appleソフトウェアエコシステム向けに開発されたAI支援プログラミングツールであるCopilot for Xcodeで実現されている。
- 参考スコア(独自算出の注目度): 8.28588489551341
- License:
- Abstract: The advancements in cloud-based Large Languages Models (LLMs) have revolutionized AI-assisted programming. However, their integration into certain local development environments like ones within the Apple software ecosystem (e.g., iOS apps, macOS) remains challenging due to computational demands and sandboxed constraints. This paper presents CAMP, a multi-model AI-assisted programming framework that consists of a local model that employs Retrieval-Augmented Generation (RAG) to retrieve contextual information from the codebase to facilitate context-aware prompt construction thus optimizing the performance of the cloud model, empowering LLMs' capabilities in local Integrated Development Environments (IDEs). The methodology is actualized in Copilot for Xcode, an AI-assisted programming tool crafted for Xcode that employs the RAG module to address software constraints and enables diverse generative programming tasks, including automatic code completion, documentation, error detection, and intelligent user-agent interaction. The results from objective experiments on generated code quality and subjective experiments on user adoption collectively demonstrate the pilot success of the proposed system and mark its significant contributions to the realm of AI-assisted programming.
- Abstract(参考訳): クラウドベースのLarge Languages Models(LLM)の進歩は、AI支援プログラミングに革命をもたらした。
しかし、Appleのソフトウェアエコシステム(例えばiOSアプリやmacOS)のような特定のローカル開発環境への統合は、計算要求とサンドボックス制約のため、依然として困難である。
本稿では,レトリーバル拡張生成(RAG)をベースとしたマルチモデルAI支援プログラミングフレームワークであるCAMPについて述べる。このフレームワークは,コードベースからコンテキスト情報を取得し,コンテキスト認識の迅速な構築を容易にすることで,クラウドモデルの性能を最適化し,ローカル統合開発環境(IDE)におけるLCMの能力を高める。
ソフトウェア制約に対応するためにRAGモジュールを使用し、自動コード補完、ドキュメンテーション、エラー検出、インテリジェントユーザエージェントインタラクションを含む多様な生成プログラミングタスクを可能にする。
生成したコードの品質に関する客観的実験とユーザ導入に関する主観的な実験の結果は、提案システムのパイロット成功を総合的に証明し、AI支援プログラミングの領域におけるその重要な貢献を示すものである。
関連論文リスト
- VisionCoder: Empowering Multi-Agent Auto-Programming for Image Processing with Hybrid LLMs [8.380216582290025]
本稿では,自動プログラミングタスクを協調的に完了するマルチエージェントフレームワークを提案する。
各エージェントは、仮想組織をまとめて形成する、ソフトウェア開発サイクルにおいて、明確な役割を担います。
このフレームワークは、プロジェクト、モジュール、ファンクションレベルにまたがるツリー構造化の思考分布と開発メカニズムを確立することで、コスト効率と効率的なソリューションを提供します。
論文 参考訳(メタデータ) (2024-10-25T01:52:15Z) - Self-Evolving Multi-Agent Collaboration Networks for Software Development [32.78667834175446]
本稿では,MACネットワークのための新たな自己進化パラダイムであるEvoMACを紹介する。
従来のニューラルネットワークトレーニングにインスパイアされたEvoMACは、テキストベースの環境フィードバックを取得する。
本稿では,要件指向ソフトウェア開発ベンチマークrSDE-Benchを提案する。
論文 参考訳(メタデータ) (2024-10-22T12:20:23Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
私たちは、人間の開発者と同じような方法で世界と対話するAIエージェントを開発するためのプラットフォームであるOpenHandsを紹介します。
プラットフォームが新しいエージェントの実装を可能にし、コード実行のためのサンドボックス環境との安全なインタラクション、評価ベンチマークの導入について説明する。
論文 参考訳(メタデータ) (2024-07-23T17:50:43Z) - Agentless: Demystifying LLM-based Software Engineering Agents [12.19683999553113]
Agentless - ソフトウェア開発の問題を自動解決するためのエージェントレスアプローチです。
Agentlessはエージェントベースのアプローチの冗長で複雑な設定と比較すると、ローカライゼーション、修復、パッチ検証の3フェーズプロセスをシンプルに採用している。
人気の高いSWE-bench Liteベンチマークの結果から、Agentlessは驚くほど高いパフォーマンスと低コストを達成できることがわかった。
論文 参考訳(メタデータ) (2024-07-01T17:24:45Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - OS-Copilot: Towards Generalist Computer Agents with Self-Improvement [48.29860831901484]
オペレーティングシステム(OS)の包括的要素と対話可能な汎用エージェントを構築するためのフレームワークであるOS-Copilotを紹介する。
我々はOS-Copilotを使って、汎用コンピュータタスクを自動化する自己改善型実施エージェントであるFRIDAYを開発した。
一般的なAIアシスタントのベンチマークであるGAIAでは、FRIDAYが従来の手法を35%上回り、以前のタスクから蓄積したスキルを通じて、目に見えないアプリケーションへの強力な一般化を示している。
論文 参考訳(メタデータ) (2024-02-12T07:29:22Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [58.04529328728999]
身体視覚言語モデル(VLM)は多モード認識と推論において大きな進歩を遂げた。
このギャップを埋めるために、我々は、計画と操作を接続する媒体として実行可能なコード生成を使用する、具体化された視覚言語プログラマであるOctopusを紹介した。
Octopusは、1)エージェントの視覚的およびテキスト的タスクの目的を正確に理解し、2)複雑なアクションシーケンスを定式化し、3)実行可能なコードを生成するように設計されている。
論文 参考訳(メタデータ) (2023-10-12T17:59:58Z) - Copilot for Xcode: Exploring AI-Assisted Programming by Prompting
Cloud-based Large Language Models [2.5272389610447856]
Copilot for Xcodeは、人間のソフトウェア開発者をサポートするためのプログラム構成と設計のためのAI支援プログラミングツールである。
クラウドベースのLarge Language Models(LLM)をAppleのローカル開発環境であるXcodeとシームレスに統合することにより、このツールは生産性を高め、Appleソフトウェアエコシステムにおけるソフトウェア開発の創造性を解放する。
論文 参考訳(メタデータ) (2023-07-08T09:11:19Z) - Natural Language Generation and Understanding of Big Code for
AI-Assisted Programming: A Review [9.355153561673855]
本稿では,Big Codeを用いてトレーニングしたトランスフォーマーベース大規模言語モデル(LLM)に焦点を当てる。
LLMは、コード生成、コード補完、コード翻訳、コード洗練、コードの要約、欠陥検出、クローン検出など、AI支援プログラミングアプリケーションを促進する上で重要な役割を担っている。
これらのアプリケーションにNLP技術とソフトウェア自然性を導入する上での課題と機会を探究する。
論文 参考訳(メタデータ) (2023-07-04T21:26:51Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。