Optimizing Large Language Models: Metrics, Energy Efficiency, and Case Study Insights
- URL: http://arxiv.org/abs/2504.06307v1
- Date: Mon, 07 Apr 2025 21:56:59 GMT
- Title: Optimizing Large Language Models: Metrics, Energy Efficiency, and Case Study Insights
- Authors: Tahniat Khan, Soroor Motie, Sedef Akinli Kocak, Shaina Raza,
- Abstract summary: The rapid adoption of large language models (LLMs) has led to significant energy consumption and carbon emissions.<n>This paper explores the integration of energy-efficient optimization techniques in the deployment of LLMs to address these concerns.
- Score: 2.1249213103048414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid adoption of large language models (LLMs) has led to significant energy consumption and carbon emissions, posing a critical challenge to the sustainability of generative AI technologies. This paper explores the integration of energy-efficient optimization techniques in the deployment of LLMs to address these environmental concerns. We present a case study and framework that demonstrate how strategic quantization and local inference techniques can substantially lower the carbon footprints of LLMs without compromising their operational effectiveness. Experimental results reveal that these methods can reduce energy consumption and carbon emissions by up to 45\% post quantization, making them particularly suitable for resource-constrained environments. The findings provide actionable insights for achieving sustainability in AI while maintaining high levels of accuracy and responsiveness.
Related papers
- Systematic Weight Evaluation for Pruning Large Language Models: Enhancing Performance and Sustainability [1.542607498220242]
This research focuses on the systematic evaluation of individual weight importance throughout the training process.
We propose a method that effectively reduces model size without compromising performance.
These findings highlight the critical need for optimized AI models to ensure sustainable development.
arXiv Detail & Related papers (2025-02-24T11:34:49Z) - Addressing the sustainable AI trilemma: a case study on LLM agents and RAG [7.6212949300713015]
Large language models (LLMs) have demonstrated significant capabilities, but their widespread deployment and more advanced applications raise critical sustainability challenges.<n>We propose the concept of the Sustainable AI Trilemma, highlighting the tensions between AI capability, digital equity, and environmental sustainability.
arXiv Detail & Related papers (2025-01-14T17:21:16Z) - Prompt engineering and its implications on the energy consumption of Large Language Models [4.791072577881446]
Large language models (LLMs) in software engineering pose severe challenges regarding computational resources, data centers, and carbon emissions.<n>In this paper, we investigate how prompt engineering techniques (PETs) can impact the carbon emission of the Llama 3 model for the code generation task.
arXiv Detail & Related papers (2025-01-10T11:49:31Z) - A Survey of Sustainability in Large Language Models: Applications, Economics, and Challenges [0.7889270818022226]
Large Language Models (LLMs) have transformed numerous domains by providing advanced capabilities in natural language understanding, generation, and reasoning.<n>Despite their groundbreaking applications across industries such as research, healthcare, and creative media, their rapid adoption raises critical concerns regarding sustainability.<n>This survey paper examines the environmental, economic, and computational challenges associated with LLMs, focusing on energy consumption, carbon emissions, and resource utilization in data centers.
arXiv Detail & Related papers (2024-12-06T05:20:04Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - EcoMLS: A Self-Adaptation Approach for Architecting Green ML-Enabled Systems [1.0923877073891446]
Self-adaptation techniques, recognized for their potential in energy savings within software systems, have yet to be extensively explored in Machine Learning-Enabled Systems.
This research underscores the feasibility of enhancing MLS sustainability through intelligent runtime adaptations.
arXiv Detail & Related papers (2024-04-17T14:12:47Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.