Enhancing entanglement in nano-mechanical oscillators via hybrid optomechanical systems
- URL: http://arxiv.org/abs/2410.15345v1
- Date: Sun, 20 Oct 2024 09:37:30 GMT
- Title: Enhancing entanglement in nano-mechanical oscillators via hybrid optomechanical systems
- Authors: Muhdin Abdo Wodedo, Tewodros Yirgashewa Darge, Berihu Teklu, Tesfay Gebremariam Tesfahannes,
- Abstract summary: We compare four criteria for continuous-variable entanglement, which serve as sufficient conditions for determining the separability of Gaussian two-mode states.
Our findings indicate that while the applied inseparability criteria show similar entanglement patterns within specific parameter ranges, the degree of entanglement varies depending on the chosen criteria.
- Score: 0.0
- License:
- Abstract: In this paper, we explore and compare four criteria for continuous-variable entanglement, which serve as sufficient conditions for determining the separability of Gaussian two-mode states. Our system comprises two nano-mechanical resonators coupled to a hybrid doubly resonant optomechanical cavity system integrated with a non-degenerate optical parametric amplifier. The entanglement between the mechanical oscillators is primarily driven by non-classical state transitions of injected photons from the squeezed vacuum reservoir and intracavity squeezed radiation induced by radiation pressure in which the system operates in the weak coupling regime within good cavity limit. Our findings indicate that while the applied inseparability criteria show similar entanglement patterns within specific parameter ranges, the degree of entanglement varies depending on the chosen criteria. Additionally, the combined effects of injected squeezing and the parametric amplifier significantly enhance the entanglement when optimal parameters are selected. We also observe that the strength of the entanglement is mainly influenced by optomechanical cooperativity and thermal noise from the mechanical baths. The entanglement levels can be controlled by carefully adjusting these parameters, suggesting potential applications in quantum metrology and quantum information processing.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Tripartite quantum entanglement with squeezed optomechanics [3.1938039621723724]
We propose how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system.
The advantages of this system are twofold: (i) one can effectively regulate the light-mirror interactions by introducing a squeezed intracavity mode via the OPA; (ii) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely.
arXiv Detail & Related papers (2023-11-20T02:00:17Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Optomechanical parametric oscillation of a quantum light-fluid lattice [0.0]
We describe a fully-resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes.
We show that the coherent mechanical oscillations correspond to parametric resonances with threshold condition different to that of standard linear optomechanical self-oscillation.
The observed new phenomena can have applications for the generation of entangled phonon pairs, squeezed mechanical states relevant in sensing and quantum computation, and for the bidirectional frequency conversion of signals in a technologically relevant range.
arXiv Detail & Related papers (2021-12-30T23:59:43Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Silicon-nitride nanosensors toward room temperature quantum
optomechanics [0.05391029385811007]
A well-established experimental platform is based on a thin film stoichiometric ($ Si_3 N_4 $) nanomembrane embedded in a Fabry-Perot cavity.
We investigate, theoretically and experimentally, the edge loss mechanisms comparing two state-of-the-art resonators built by standard micro/fabrication techniques.
arXiv Detail & Related papers (2021-04-29T12:41:16Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.