Dissipative optomechanical preparation of non-Gaussian mechanical
entanglement
- URL: http://arxiv.org/abs/2112.10427v2
- Date: Wed, 2 Mar 2022 07:04:36 GMT
- Title: Dissipative optomechanical preparation of non-Gaussian mechanical
entanglement
- Authors: Gentil Dias de Moraes Neto and Victor Montenegro
- Abstract summary: This work proposes an on-demand scheme to engineer phononic non-Gaussian bipartite entanglement in the nonlinear regime by exploiting cavity dissipation.
We show that our scheme is robust in the presence of decoherence and temperature within state-of-the-art optomechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement had played a crucial role in developing frontier technologies as
a critical resource, for instance, in quantum teleportation and quantum sensing
schemes. Notably, thanks to the ability to cool down the vibrational modes of
mechanical oscillators to its quantum regime, entanglement between mechanical
modes and the production of nonclassical mechanical states have emerged as
central resources for quantum technological applications. Thus, proposing
deterministic schemes to achieve those tasks is of paramount importance. While
the dominant scheme for bipartite mechanical entanglement involves Gaussian
optomechanical interactions (linearized regime) to generate two-mode squeezed
vacuum states, entangling two-modes exploiting the bare non-Gaussian
optomechanical interaction (nonlinear strong single-photon regime) remains less
covered. This work proposes an on-demand scheme to engineer phononic
non-Gaussian bipartite entanglement in the nonlinear regime by exploiting
cavity dissipation. Interestingly, our protocol (operating in the resolved
sideband and photon blockade regime) renders the possibility of achieving a
high degree of steady-state entanglement. We further show that our
deterministic scheme is robust in the presence of decoherence and temperature
within state-of-the-art optomechanics, along with the required conditions to
obtain non-Gaussianity of the achieved bipartite mechanical steady-state.
Related papers
- Enhancing entanglement in nano-mechanical oscillators via hybrid optomechanical systems [0.0]
We compare four criteria for continuous-variable entanglement, which serve as sufficient conditions for determining the separability of Gaussian two-mode states.
Our findings indicate that while the applied inseparability criteria show similar entanglement patterns within specific parameter ranges, the degree of entanglement varies depending on the chosen criteria.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Topological lattices realized in superconducting circuit optomechanics [0.0]
We show that it is possible to directly measure the mode functions of hybridized modes without using any local probe.
Such optomechanical lattices offer an avenue to explore collective, quantum many-body, and quench dynamics.
arXiv Detail & Related papers (2021-11-17T14:13:52Z) - Two-mode Schr\"odinger-cat states with nonlinear optomechanics:
generation and verification of non-Gaussian mechanical entanglement [0.0]
We introduce a pulsed approach that utilizes the nonlinearity of the radiation-pressure interaction combined with photon-counting measurements.
We describe a protocol using subsequent pulsed interactions to verify the non-Gaussian entanglement generated.
Our scheme offers significant potential for further research and development that utilizes such non-Gaussian states for quantum-information and sensing applications.
arXiv Detail & Related papers (2021-09-17T12:58:52Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum manipulation of a two-level mechanical system [19.444636864515726]
We consider a nonlinearly coupled electromechanical system, and develop a quantitative theory for two-phonon cooling.
In the presence of two-phonon cooling, the mechanical Hilbert space is effectively reduced to its ground and first excited states.
We propose a scheme for performing arbitrary Bloch sphere rotations, and derive the fidelity in the specific case of a $pi$-pulse.
arXiv Detail & Related papers (2021-01-05T19:34:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.