論文の概要: CompAct: Compressed Activations for Memory-Efficient LLM Training
- arxiv url: http://arxiv.org/abs/2410.15352v1
- Date: Sun, 20 Oct 2024 10:24:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:46.058716
- Title: CompAct: Compressed Activations for Memory-Efficient LLM Training
- Title(参考訳): CompAct: メモリ効率の良いLLMトレーニングのための圧縮活性化
- Authors: Yara Shamshoum, Nitzan Hodos, Yuval Sieradzki, Assaf Schuster,
- Abstract要約: CompActはGPU上でのピークメモリ利用を事前トレーニングで25~30%削減し、LLMの微調整で50%削減する技術である。
低ランクで圧縮されたアクティベーションを後方パスに格納することで、必要なメモリを大幅に削減する。
CompActの貯蓄は、より大きなモデルに対してさらに高いスケールを期待しています。
- 参考スコア(独自算出の注目度): 7.837209773889032
- License:
- Abstract: We introduce CompAct, a technique that reduces peak memory utilization on GPU by 25-30% for pretraining and 50% for fine-tuning of LLMs. Peak device memory is a major limiting factor in training LLMs, with various recent works aiming to reduce model memory. However most works don't target the largest component of allocated memory during training: the model's compute graph, which is stored for the backward pass. By storing low-rank, compressed activations to be used in the backward pass we greatly reduce the required memory, unlike previous methods which only reduce optimizer overheads or the number of trained parameters. Our compression uses random projection matrices, thus avoiding additional memory overheads. Comparisons with previous techniques for either pretraining or fine-tuning show that CompAct substantially improves existing compute-performance tradeoffs. We expect CompAct's savings to scale even higher for larger models.
- Abstract(参考訳): 本稿では,GPU上でのピークメモリ利用率を事前学習で25~30%削減し,LLMの微調整で50%削減する手法であるCompActを紹介する。
ピークデバイスメモリは、モデルメモリの削減を目的とした、LLMのトレーニングにおいて、大きな制限要因である。
しかしながら、ほとんどの作業は、トレーニング中に割り当てられたメモリの最大のコンポーネントをターゲットにしません。
低ランクで圧縮されたアクティベーションを後方パスに格納することで、オプティマイザのオーバーヘッドやトレーニングされたパラメータの数だけを削減する従来の方法とは異なり、必要なメモリを大幅に削減する。
圧縮はランダムなプロジェクション行列を使用し、メモリオーバーヘッドの増大を回避する。
事前学習や微調整の手法と比較すると、CompActは既存の計算性能のトレードオフを大幅に改善している。
CompActの貯蓄は、より大きなモデルに対してさらに高いスケールを期待しています。
関連論文リスト
- Memory Layers at Scale [67.00854080570979]
この研究はメモリ層を概念実証以上のものにし、現代の規模でその有用性を証明している。
ダウンストリームタスクでは、改善されたメモリ層で強化された言語モデルは、予算の2倍以上の高密度モデルよりも優れており、計算とパラメータの両方にマッチする場合の熟練モデルの混合も優れている。
最大128Bのメモリパラメータを持つスケーリング法則を1兆トークンまで事前訓練し,最大8Bパラメータを持つベースモデルと比較した,完全な並列化可能なメモリレイヤの実装を提供する。
論文 参考訳(メタデータ) (2024-12-12T23:56:57Z) - APOLLO: SGD-like Memory, AdamW-level Performance [61.53444035835778]
大規模言語モデル(LLM)は、トレーニング中にメモリ集約的であることで知られている。
メモリ使用量を減らすために、様々なメモリ効率のScalが提案されている。
i)コストのかかるSVDオペレーション、(ii)AdamWと比較して大きなパフォーマンストレードオフ、(iii)競争性能を維持する上でのメモリオーバーヘッド、などです。
論文 参考訳(メタデータ) (2024-12-06T18:55:34Z) - MEMO: Fine-grained Tensor Management For Ultra-long Context LLM Training [24.066283519769968]
大規模言語モデル(LLM)は、よりクリエイティブなアプリケーションを促進するために、拡張コンテキスト長を使用して訓練されている。
本稿では,メモリ管理を微粒化するための新しいフレームワークであるMEMOを提案する。
MeMOはMegatron-LMやDeepSpeedと比べて平均1.97倍と1.80倍のMFUを達成している。
論文 参考訳(メタデータ) (2024-07-16T18:59:49Z) - $\text{Memory}^3$: Language Modeling with Explicit Memory [22.572376536612015]
我々は、大言語モデル(LLM)に明示的なメモリ、モデルパラメータよりも安いメモリフォーマット、テキスト検索拡張生成(RAG)を装備する。
予備的な概念実証として, 2.4B LLM をゼロからトレーニングし, より大きな LLM モデルやRAG モデルよりも優れた性能を実現する。
本稿では,知識の外部化を支援するメモリ回路理論を導入し,記憶をトラクタブルにするメモリスペーサー化機構を含む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T11:07:23Z) - Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation [29.139579820699495]
この研究は、活性化関数と層正規化の観点から微調整におけるメモリオーバーヘッドを低減することを目的としている。
提案手法をバックプロパゲーショントレーニングに適用し,GELUおよびSiLU活性化関数のメモリ効率の代替を導出する。
さらに、メモリ共有バックプロパゲーション戦略を導入し、アクティベーションメモリを2つの隣接層で共有できるようにする。
論文 参考訳(メタデータ) (2024-06-24T03:09:15Z) - VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections [35.133698935322634]
大規模言語モデル(LLM)は、最近、多くの言語処理タスクに対処するための強力なツールとして登場した。
勾配勾配勾配を用いた効率的なモデル収束に必要な重要な成分を同定し,特徴付ける。
この結果から, 微調整と事前学習の両方のための, 安価かつメモリ効率のよいアルゴリズムが得られた。
論文 参考訳(メタデータ) (2024-05-28T09:23:14Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection [133.45193150403537]
LLM(Large Language Models)のトレーニングは、重み付けやGPU状態の増大によって、メモリ上の重大な問題が発生する。
本研究では,メモリ効率のトレーニング戦略としてグラディエント・ローランド・プロジェクション(GaLore)を提案する。
私たちの8ビットのGaLoreは、BF16ベースラインと比較して、メモリを82.5%、トレーニング総メモリを63.3%削減します。
論文 参考訳(メタデータ) (2024-03-06T07:29:57Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
CIL(Class-Incremental Learning)は、この要件を満たすために、限られたメモリサイズでモデルをトレーニングすることを目的としている。
モデルサイズを総予算にカウントし,メモリサイズに整合する手法を比較すると,保存モデルは常に機能しないことを示す。
本稿では,メモリ効率のよい拡張可能なMOdelのための MEMO という,シンプルで効果的なベースラインを提案する。
論文 参考訳(メタデータ) (2022-05-26T08:24:01Z) - Mesa: A Memory-saving Training Framework for Transformers [58.78933015299703]
本稿では,トランスフォーマーのためのメモリ節約トレーニングフレームワークであるMesaを紹介する。
Mesaは、フォワードパス中に正確なアクティベーションを使用し、低精度のアクティベーションを格納することで、トレーニング中のメモリ消費を減らす。
ImageNet、CIFAR-100、ADE20Kの実験は、Mesaがトレーニング中にメモリフットプリントの半分を削減できることを示した。
論文 参考訳(メタデータ) (2021-11-22T11:23:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。