Exploring Curriculum Learning for Vision-Language Tasks: A Study on Small-Scale Multimodal Training
- URL: http://arxiv.org/abs/2410.15509v1
- Date: Sun, 20 Oct 2024 21:03:51 GMT
- Title: Exploring Curriculum Learning for Vision-Language Tasks: A Study on Small-Scale Multimodal Training
- Authors: Rohan Saha, Abrar Fahim, Alona Fyshe, Alex Murphy,
- Abstract summary: We investigate the role of 3 primary variables in a limited data regime as part of the BabyLM challenge.
We find that curriculum learning benefits multimodal evaluations over non-curriclum learning models.
- Score: 4.062463195973711
- License:
- Abstract: For specialized domains, there is often not a wealth of data with which to train large machine learning models. In such limited data / compute settings, various methods exist aiming to $\textit{do more with less}$, such as finetuning from a pretrained model, modulating difficulty levels as data are presented to a model (curriculum learning), and considering the role of model type / size. Approaches to efficient $\textit{machine}$ learning also take inspiration from $\textit{human}$ learning by considering use cases where machine learning systems have access to approximately the same number of words experienced by a 13 year old child (100M words). We investigate the role of 3 primary variables in a limited data regime as part of the multimodal track of the BabyLM challenge. We contrast: (i) curriculum learning, (ii), pretraining (with text-only data), (iii) model type. We modulate these variables and assess them on two types of tasks: (a) multimodal (text+image), and (b) unimodal (text-only) tasks. We find that curriculum learning benefits multimodal evaluations over non-curriclum learning models, particularly when combining text-only pretraining. On text-only tasks, curriculum learning appears to help models with smaller trainable parameter counts. We suggest possible reasons based on architectural differences and training designs as to why one might observe such results.
Related papers
- 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities [17.374241865041856]
We show the possibility of training one model to solve at least 3x more tasks/modalities than existing ones and doing so without a loss in performance.
We successfully scale the training to a three billion parameter model using tens of modalities and different datasets.
The resulting models and training code are open sourced at 4m.epfl.ch.
arXiv Detail & Related papers (2024-06-13T17:59:42Z) - Acquiring Linguistic Knowledge from Multimodal Input [10.965306219502303]
In contrast to children, language models (LMs) exhibit considerably inferior data efficiency when acquiring language.
We test the hypothesis that this data efficiency gap is partly caused by a lack of multimodal input and grounding in the learning environment of typical language models.
arXiv Detail & Related papers (2024-02-27T23:29:10Z) - Exploring intra-task relations to improve meta-learning algorithms [1.223779595809275]
We aim to exploit external knowledge of task relations to improve training stability via effective mini-batching of tasks.
We hypothesize that selecting a diverse set of tasks in a mini-batch will lead to a better estimate of the full gradient and hence will lead to a reduction of noise in training.
arXiv Detail & Related papers (2023-12-27T15:33:52Z) - UnIVAL: Unified Model for Image, Video, Audio and Language Tasks [105.77733287326308]
UnIVAL model goes beyond two modalities and unifies text, images, video, and audio into a single model.
Our model is efficiently pretrained on many tasks, based on task balancing and multimodal curriculum learning.
Thanks to the unified model, we propose a novel study on multimodal model merging via weight generalization.
arXiv Detail & Related papers (2023-07-30T09:48:36Z) - EXnet: Efficient In-context Learning for Data-less Text classification [0.0]
We present EXnet, a model specifically designed to perform in-context learning without limitations on the number of examples.
We argue that in-context learning is an effective method to increase task accuracy, and providing examples facilitates cross-task generalization.
With extensive experiments, we show that even our smallest model (15M parameters) generalizes to several unseen classification tasks and domains.
arXiv Detail & Related papers (2023-05-24T01:40:57Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - BERTIN: Efficient Pre-Training of a Spanish Language Model using
Perplexity Sampling [0.0]
Common Crawl might contain enough noise to make this pre-training sub-optimal.
We present a novel data-centric technique which enables the pre-training of language models in roughly half the amount of steps.
Our work is proof of the versatility of Transformers, and paves the way for small teams to train their models on a limited budget.
arXiv Detail & Related papers (2022-07-14T10:48:42Z) - Multi-Task Self-Training for Learning General Representations [97.01728635294879]
Multi-task self-training (MuST) harnesses the knowledge in independent specialized teacher models to train a single general student model.
MuST is scalable with unlabeled or partially labeled datasets and outperforms both specialized supervised models and self-supervised models when training on large scale datasets.
arXiv Detail & Related papers (2021-08-25T17:20:50Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
We propose a knowledge-grounded pre-training (KGPT) to generate knowledge-enriched text.
We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness.
Under zero-shot setting, our model achieves over 30 ROUGE-L on WebNLG while all other baselines fail.
arXiv Detail & Related papers (2020-10-05T19:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.