論文の概要: Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
- arxiv url: http://arxiv.org/abs/2410.15539v1
- Date: Sun, 20 Oct 2024 23:51:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:45.548013
- Title: Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
- Title(参考訳): 低リソース言語に対する文法的誤り訂正:Zarmaの場合
- Authors: Mamadou K. Keita, Christopher Homan, Sofiane Abdoulaye Hamani, Adwoa Bremang, Marcos Zampieri, Habibatou Abdoulaye Alfari, Elysabhete Amadou Ibrahim, Dennis Owusu,
- Abstract要約: 文法的誤り訂正(GEC)は、Zarmaのような低リソース言語のために書かれた材料を改善するために重要である。
本研究では,Zarma における GEC のためのルールベース手法,機械翻訳 (MT) モデル,および大規模言語モデル (LLM) を比較した。
- 参考スコア(独自算出の注目度): 8.057796934109938
- License:
- Abstract: Grammatical error correction (GEC) is important for improving written materials for low-resource languages like Zarma -- spoken by over 5 million people in West Africa. Yet it remains a challenging problem. This study compares rule-based methods, machine translation (MT) models, and large language models (LLMs) for GEC in Zarma. We evaluate each approach's effectiveness on our manually-built dataset of over 250,000 examples using synthetic and human-annotated data. Our experiments show that the MT-based approach using the M2M100 model outperforms others, achieving a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations, and scoring 3.0 out of 5.0 in logical/grammar error correction during MEs by native speakers. The rule-based method achieved perfect detection (100%) and high suggestion accuracy (96.27%) for spelling corrections but struggled with context-level errors. LLMs like MT5-small showed moderate performance with a detection rate of 90.62% and a suggestion accuracy of 57.15%. Our work highlights the potential of MT models to enhance GEC in low-resource languages, paving the way for more inclusive NLP tools.
- Abstract(参考訳): 文法的誤り訂正(GEC)は、西アフリカで500万人以上が話していた、Zarmaのような低リソース言語向けの資料の改善に重要である。
しかし、これは依然として難しい問題だ。
本研究では,Zarma における GEC のためのルールベース手法,機械翻訳 (MT) モデル,および大規模言語モデル (LLM) を比較した。
人工的および人為的注釈付きデータを用いて,手作業で作成した25万以上のサンプルデータセットに対して,それぞれのアプローチの有効性を評価する。
実験の結果,M2M100モデルを用いたMT法では, 検出率95.82%, 提案精度78.90%, ネイティブ話者によるMESにおける論理・文法誤差補正では5.0点中3.0点が他より優れていた。
この法則に基づく手法は、スペル修正には完全な検出(100%)と高い提案精度(96.27%)を達成したが、文脈レベルの誤りに悩まされた。
MT5-smallのようなLLMは、検出率90.62%、提案精度57.15%の適度な性能を示した。
我々の研究は、低リソース言語におけるGECを強化するMTモデルの可能性を強調し、より包括的なNLPツールの道を開いた。
関連論文リスト
- Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu [53.437954702561065]
In-context machine translation (MT) with large language model (LLMs) は低リソースMTにおいて有望な手法である。
本研究では,各資源とその品質が満州語による翻訳性能に与える影響を体系的に検討した。
結果から,良質な辞書や優れた並列例は有用であり,文法はほとんど役に立たないことが明らかとなった。
論文 参考訳(メタデータ) (2025-02-17T14:53:49Z) - Challenges in Adapting Multilingual LLMs to Low-Resource Languages using LoRA PEFT Tuning [0.4194295877935868]
本研究では,ローランド適応 (LoRA) -高効率ファインチューニング (PEFT) がマラウイの多言語Gemmaモデルに及ぼす影響について検討した。
52,000対の命令応答対を持つ翻訳データセットを用いて、評価結果が微調整後に低下する一方で、手動による評価では、微調整されたモデルが元のモデルよりも優れていることがしばしば示唆されている。
論文 参考訳(メタデータ) (2024-11-27T18:14:38Z) - MM-Eval: A Hierarchical Benchmark for Modern Mongolian Evaluation in LLMs [3.2243649561631984]
大規模言語モデル(LLM)は、高リソース言語では優れているが、モンゴル語のような低リソース言語では顕著な課題に直面している。
本稿では,これらの課題を,言語能力(構文と意味)と認知能力(知識と推論)に分類することで解決する。
これらの領域を体系的に評価するために,現代モンゴル語テキストブックIに基づく特殊なデータセットMM-Evalを開発した。
論文 参考訳(メタデータ) (2024-11-14T14:58:38Z) - MQM-APE: Toward High-Quality Error Annotation Predictors with Automatic Post-Editing in LLM Translation Evaluators [53.91199933655421]
大規模言語モデル(LLM)は、機械翻訳(MT)の品質評価の裁判官として大きな可能性を秘めている。
非インパクト的なエラーをフィルタリングするアイデアに基づいて、ユニバーサルでトレーニング不要なフレームワークである$textbfMQM-APEを紹介します。
実験の結果,GEMBA-MQMに対する誤差の信頼性と品質の両方が一貫して改善されていることがわかった。
論文 参考訳(メタデータ) (2024-09-22T06:43:40Z) - How Ready Are Generative Pre-trained Large Language Models for Explaining Bengali Grammatical Errors? [0.4857223913212445]
高度な生成人工知能(AI)を利用した文法的誤り訂正(GEC)ツール。
しかし、それらはしばしば、本質的な自然言語の説明の提供に不足する。
このような言語では、文法的誤り説明(GEE)システムは正しい文だけでなく、誤りの説明も提供すべきである。
論文 参考訳(メタデータ) (2024-05-27T15:56:45Z) - Machine Translation Meta Evaluation through Translation Accuracy
Challenge Sets [92.38654521870444]
ACESは146の言語ペアにまたがる対照的な課題セットです。
このデータセットは、メトリクスが68の翻訳精度の誤差を識別できるかどうかを調べることを目的としている。
我々は、WMT2022および2023のメトリクス共有タスクに提出された50のメトリクスに対して、ACESをベンチマークすることで、大規模な研究を行う。
論文 参考訳(メタデータ) (2024-01-29T17:17:42Z) - Prompting open-source and commercial language models for grammatical
error correction of English learner text [19.192210777082053]
大規模言語モデル(LLM)は、流動的で文法的なテキストを生成するよう促すことができる。
確立したベンチマークデータセット上で, 文法的誤り訂正(GEC)におけるLLMの性能評価を行った。
いくつかのオープンソースモデルは、最小限の編集ベンチマークで商用モデルよりも優れており、いくつかの設定ではゼロショットプロンプトは、少数ショットプロンプトと同じくらい競争力がある。
論文 参考訳(メタデータ) (2024-01-15T14:19:47Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQMは,大規模な言語モデルに対して,翻訳におけるエラーの識別と分類を求めるプロンプト技術である。
テキスト内学習と微調整によるラベル付きデータの影響について検討する。
次に, PaLM-2モデルを用いてAutoMQMを評価し, スコアのプロンプトよりも性能が向上することがわかった。
論文 参考訳(メタデータ) (2023-08-14T17:17:21Z) - ChatGPT for Arabic Grammatical Error Correction [5.945320097465418]
大きな言語モデル(LLM)は、人間の指示に従うように微調整され、英語のNLPタスクにおいて重要な機能を示した。
本稿では,アラビア語の豊富な形態が原因で複雑化した課題である,アラビア語 GEC における微調整 LLM の指導能力について検討する。
命令の微調整モデルは,そのサイズによらず,かなり小型の完全微調整モデルに比べて性能が劣ることがわかった。
論文 参考訳(メタデータ) (2023-08-08T18:00:39Z) - Few-shot Instruction Prompts for Pretrained Language Models to Detect
Social Biases [55.45617404586874]
我々は、事前訓練された言語モデル(LM)を誘導する数ショットの命令ベース手法を提案する。
大規模なLMは、微調整モデルとよく似た精度で、異なる種類の細粒度バイアスを検出できることを示す。
論文 参考訳(メタデータ) (2021-12-15T04:19:52Z) - LM-Critic: Language Models for Unsupervised Grammatical Error Correction [128.9174409251852]
文を文法的に判断する LM-Critic の定義において,事前訓練された言語モデル (LM) の活用法を示す。
このLM-Critic と BIFI と、ラベルなし文の集合を併用して、現実的な非文法的/文法的ペアをブートストラップし、修正子を訓練する。
論文 参考訳(メタデータ) (2021-09-14T17:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。