論文の概要: On Limitations of LLM as Annotator for Low Resource Languages
- arxiv url: http://arxiv.org/abs/2411.17637v2
- Date: Sat, 01 Mar 2025 16:07:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 16:11:59.025463
- Title: On Limitations of LLM as Annotator for Low Resource Languages
- Title(参考訳): 低資源言語用アノテーションとしてのLLMの限界について
- Authors: Suramya Jadhav, Abhay Shanbhag, Amogh Thakurdesai, Ridhima Sinare, Raviraj Joshi,
- Abstract要約: 低リソース言語は、教師付き学習、アノテーション、分類といったタスクのための十分な言語データ、リソース、ツールが不足しているため、重大な課題に直面している。
このギャップを埋めるために、Large Language Models (LLM) は潜在的なアノテータの機会を提供する。
- 参考スコア(独自算出の注目度): 0.4194295877935868
- License:
- Abstract: Low-resource languages face significant challenges due to the lack of sufficient linguistic data, resources, and tools for tasks such as supervised learning, annotation, and classification. This shortage hinders the development of accurate models and datasets, making it difficult to perform critical NLP tasks like sentiment analysis or hate speech detection. To bridge this gap, Large Language Models (LLMs) present an opportunity for potential annotators, capable of generating datasets and resources for these underrepresented languages. In this paper, we focus on Marathi, a low-resource language, and evaluate the performance of both closed-source and open-source LLMs as annotators, while also comparing these results with fine-tuned BERT models. We assess models such as GPT-4o and Gemini 1.0 Pro, Gemma 2 (2B and 9B), and Llama 3.1 (8B and 405B) on classification tasks including sentiment analysis, news classification, and hate speech detection. Our findings reveal that while LLMs excel in annotation tasks for high-resource languages like English, they still fall short when applied to Marathi. Even advanced models like GPT-4o and Llama 3.1 405B underperform compared to fine-tuned BERT-based baselines, with GPT-4o and Llama 3.1 405B trailing fine-tuned BERT by accuracy margins of 10.2% and 14.1%, respectively. This highlights the limitations of LLMs as annotators for low-resource languages.
- Abstract(参考訳): 低リソース言語は、教師付き学習、アノテーション、分類などのタスクのための十分な言語データ、リソース、ツールが不足しているため、重大な課題に直面している。
この不足は正確なモデルやデータセットの開発を妨げるため、感情分析やヘイトスピーチ検出といった重要なNLPタスクの実行が困難になる。
このギャップを埋めるために、Large Language Models (LLM) は潜在的なアノテータの機会を提供する。
本稿では,低リソース言語であるMarathiに着目し,オープンソースLLMとオープンソースLLMのアノテータとしての性能を評価するとともに,これらの結果を細調整のBERTモデルと比較する。
GPT-4o, Gemini 1.0 Pro, Gemma 2 (2B, 9B), Llama 3.1 (8B, 405B) などのモデルについて, 感情分析, ニュース分類, ヘイトスピーチ検出などの分類課題について検討した。
以上の結果から,LLMは英語などの高リソース言語のアノテーションタスクに優れるが,Marathiに適用しても不足していることが明らかとなった。
GPT-4oやLlama 3.1 405Bのような先進モデルでさえ、細調整のBERTベースラインに比べて性能が低く、GPT-4oとLlama 3.1 405Bはそれぞれ10.2%と14.1%の精度で細調整のBERTを追尾している。
これは低リソース言語のアノテーションとしてLLMの制限を強調している。
関連論文リスト
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
大規模言語モデル(LLM)は、プログラミング言語の構文、意味論、使用パターンを学ぶために、大規模で多様なデータセットに依存している。
低リソース言語では、そのようなデータの限られた可用性は、モデルを効果的に一般化する能力を損なう。
本稿では,低リソース言語におけるLLMの性能向上のためのいくつかの手法の有効性を実証研究する。
論文 参考訳(メタデータ) (2025-01-31T12:23:28Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings [12.507989493130175]
大規模言語モデル (LLM) は自然言語処理 (NLP) に大きな関心を寄せている。
近年の研究では、低リソース言語におけるLLMの限界が強調されている。
英語からバングラ語、ヒンディー語、ウルドゥー語に翻訳することで、感情と憎悪の音声タスクのデータセットを提示する。
論文 参考訳(メタデータ) (2024-08-05T05:09:23Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
我々は、事前訓練された大規模言語モデル(LLM)が、アンダーリソース言語のパフォーマンスギャップを埋める可能性について検討する。
LLM は,低リソース言語における技術の現状を,かなりのマージンで容易に設定できることがわかった。
全ての言語について、人間の評価は最高のシステムで人間と同等のパフォーマンスを示すが、BLEUのスコアは英語に比べて崩壊する。
論文 参考訳(メタデータ) (2024-02-19T16:29:40Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - GlotLID: Language Identification for Low-Resource Languages [51.38634652914054]
GlotLID-M は広い範囲、信頼性、効率性のデシラタを満たす LID モデルである。
1665の言語を識別し、以前の作業に比べてカバー範囲が大幅に増加した。
論文 参考訳(メタデータ) (2023-10-24T23:45:57Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。