Acoustic Model Optimization over Multiple Data Sources: Merging and Valuation
- URL: http://arxiv.org/abs/2410.15620v1
- Date: Mon, 21 Oct 2024 03:48:23 GMT
- Title: Acoustic Model Optimization over Multiple Data Sources: Merging and Valuation
- Authors: Victor Junqiu Wei, Weicheng Wang, Di Jiang, Conghui Tan, Rongzhong Lian,
- Abstract summary: We propose a novel paradigm to solve salient problems plaguing the Automatic Speech Recognition field.
In the first stage, multiple acoustic models are trained based upon different subsets of the complete speech data.
In the second stage, two novel algorithms are utilized to generate a high-quality acoustic model.
- Score: 13.009945735929445
- License:
- Abstract: Due to the rising awareness of privacy protection and the voluminous scale of speech data, it is becoming infeasible for Automatic Speech Recognition (ASR) system developers to train the acoustic model with complete data as before. For example, the data may be owned by different curators, and it is not allowed to share with others. In this paper, we propose a novel paradigm to solve salient problems plaguing the ASR field. In the first stage, multiple acoustic models are trained based upon different subsets of the complete speech data, while in the second phase, two novel algorithms are utilized to generate a high-quality acoustic model based upon those trained on data subsets. We first propose the Genetic Merge Algorithm (GMA), which is a highly specialized algorithm for optimizing acoustic models but suffers from low efficiency. We further propose the SGD-Based Optimizational Merge Algorithm (SOMA), which effectively alleviates the efficiency bottleneck of GMA and maintains superior model accuracy. Extensive experiments on public data show that the proposed methods can significantly outperform the state-of-the-art. Furthermore, we introduce Shapley Value to estimate the contribution score of the trained models, which is useful for evaluating the effectiveness of the data and providing fair incentives to their curators.
Related papers
- Improving Anomalous Sound Detection via Low-Rank Adaptation Fine-Tuning of Pre-Trained Audio Models [45.90037602677841]
This paper introduces a robust Anomalous Sound Detection (ASD) model that leverages audio pre-trained models.
We fine-tune these models using machine operation data, employing SpecAug as a data augmentation strategy.
Our experiments establish a new benchmark of 77.75% on the evaluation set, with a significant improvement of 6.48% compared with previous state-of-the-art (SOTA) models.
arXiv Detail & Related papers (2024-09-11T05:19:38Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
The presence of noisy labels in a training dataset can significantly impact the performance of machine learning models.
We introduce a novel algorithm called TURN, which robustly and efficiently transfers the prior knowledge of pre-trained models.
arXiv Detail & Related papers (2023-10-24T20:28:59Z) - A Complementary Joint Training Approach Using Unpaired Speech and Text
for Low-Resource Automatic Speech Recognition [25.473191378558138]
We leverage unpaired data to train a general sequence-to-sequence model.
Inspired by the complementarity of speech-PseudoLabel pair and SynthesizedAudio-text pair, we propose a complementary joint training(CJT) method.
arXiv Detail & Related papers (2022-04-05T07:02:53Z) - Representative Subset Selection for Efficient Fine-Tuning in
Self-Supervised Speech Recognition [6.450618373898492]
We consider the task of identifying an optimal subset of data for efficient fine-tuning in self-supervised speech models for ASR.
We present the COWERAGE algorithm for representative subset selection in self-supervised ASR.
arXiv Detail & Related papers (2022-03-18T10:12:24Z) - LDNet: Unified Listener Dependent Modeling in MOS Prediction for
Synthetic Speech [67.88748572167309]
We present LDNet, a unified framework for mean opinion score (MOS) prediction.
We propose two inference methods that provide more stable results and efficient computation.
arXiv Detail & Related papers (2021-10-18T08:52:31Z) - Iterative Methods for Private Synthetic Data: Unifying Framework and New
Methods [18.317488965846636]
We study private synthetic data generation for query release.
The goal is to construct a sanitized version of a sensitive dataset subject to differential privacy.
Under this framework, we propose two new methods.
arXiv Detail & Related papers (2021-06-14T04:19:35Z) - PriorGrad: Improving Conditional Denoising Diffusion Models with
Data-Driven Adaptive Prior [103.00403682863427]
We propose PriorGrad to improve the efficiency of the conditional diffusion model.
We show that PriorGrad achieves a faster convergence leading to data and parameter efficiency and improved quality.
arXiv Detail & Related papers (2021-06-11T14:04:03Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.