Distributionally Robust Instrumental Variables Estimation
- URL: http://arxiv.org/abs/2410.15634v2
- Date: Sun, 22 Dec 2024 12:30:43 GMT
- Title: Distributionally Robust Instrumental Variables Estimation
- Authors: Zhaonan Qu, Yongchan Kwon,
- Abstract summary: We show that Wasserstein DRIVE is a distributionally robust IV estimation method.
We derive the distribution of Wasserstein DRIVE and propose data-driven procedures to select the regularization parameter.
- Score: 10.765695227417865
- License:
- Abstract: Instrumental variables (IV) estimation is a fundamental method in econometrics and statistics for estimating causal effects in the presence of unobserved confounding. However, challenges such as untestable model assumptions and poor finite sample properties have undermined its reliability in practice. Viewing common issues in IV estimation as distributional uncertainties, we propose DRIVE, a distributionally robust IV estimation method. We show that DRIVE minimizes a square root variant of ridge regularized two stage least squares (TSLS) objective when the ambiguity set is based on a Wasserstein distance. In addition, we develop a novel asymptotic theory for this estimator, showing that it achieves consistency without requiring the regularization parameter to vanish. This novel property ensures that the estimator is robust to distributional uncertainties that persist in large samples. We further derive the asymptotic distribution of Wasserstein DRIVE and propose data-driven procedures to select the regularization parameter based on theoretical results. Simulation studies demonstrate the superior finite sample performance of Wasserstein DRIVE in terms of estimation error and out-of-sample prediction. Due to its regularization and robustness properties, Wasserstein DRIVE presents an appealing option when the practitioner is uncertain about model assumptions or distributional shifts in data.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Distributionally robust risk evaluation with an isotonic constraint [20.74502777102024]
Distributionally robust learning aims to control the worst-case statistical performance within an uncertainty set of candidate distributions.
We propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate.
Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.
arXiv Detail & Related papers (2024-07-09T13:56:34Z) - Model Free Prediction with Uncertainty Assessment [7.524024486998338]
We propose a novel framework that transforms the deep estimation paradigm into a platform conducive to conditional mean estimation.
We develop an end-to-end convergence rate for the conditional diffusion model and establish the normality of the generated samples.
Through numerical experiments, we empirically validate the efficacy of our proposed methodology.
arXiv Detail & Related papers (2024-05-21T11:19:50Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
Uncertainty is an essential consideration for time series forecasting tasks.
In this work, we focus on quantifying the uncertainty of traffic forecasting.
We develop Deep S-Temporal Uncertainty Quantification (STUQ), which can estimate both aleatoric and relational uncertainty.
arXiv Detail & Related papers (2022-08-11T15:21:53Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
We propose a Wasserstein distributionally robust estimation framework to estimate an unknown parameter from noisy linear measurements.
We focus on the task of analyzing the squared error performance of such estimators.
We show that the squared error can be recovered as the solution of a convex-concave optimization problem.
arXiv Detail & Related papers (2022-06-27T13:02:59Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.