論文の概要: Geographical Node Clustering and Grouping to Guarantee Data IIDness in Federated Learning
- arxiv url: http://arxiv.org/abs/2410.15693v1
- Date: Mon, 21 Oct 2024 07:03:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:17:11.556697
- Title: Geographical Node Clustering and Grouping to Guarantee Data IIDness in Federated Learning
- Title(参考訳): フェデレートラーニングにおける地理的ノードクラスタリングとデータID確保のためのグループ化
- Authors: Minkwon Lee, Hyoil Kim, Changhee Joo,
- Abstract要約: フェデレートラーニング(FL)の大きな課題は、非IIDデータセットの問題である。
本稿では,モバイルIoTノードを適切にクラスタリングし,グループ化することで,データのIID性を確保する新しい手法を提案する。
本機構は, グループ単位のデバイス数とグループ単位のデバイス数との結合コストにおいて, ベンチマークグループ化アルゴリズムを少なくとも110倍に向上させる。
- 参考スコア(独自算出の注目度): 2.903020332386652
- License:
- Abstract: Federated learning (FL) is a decentralized AI mechanism suitable for a large number of devices like in smart IoT. A major challenge of FL is the non-IID dataset problem, originating from the heterogeneous data collected by FL participants, leading to performance deterioration of the trained global model. There have been various attempts to rectify non-IID dataset, mostly focusing on manipulating the collected data. This paper, however, proposes a novel approach to ensure data IIDness by properly clustering and grouping mobile IoT nodes exploiting their geographical characteristics, so that each FL group can achieve IID dataset. We first provide an experimental evidence for the independence and identicalness features of IoT data according to the inter-device distance, and then propose Dynamic Clustering and Partial-Steady Grouping algorithms that partition FL participants to achieve near-IIDness in their dataset while considering device mobility. Our mechanism significantly outperforms benchmark grouping algorithms at least by 110 times in terms of the joint cost between the number of dropout devices and the evenness in per-group device count, with a mild increase in the number of groups only by up to 0.93 groups.
- Abstract(参考訳): Federated Learning(FL)は、スマートIoTのような多数のデバイスに適した分散AIメカニズムである。
FLの最大の課題は、非IIDデータセット問題であり、FL参加者が収集した異種データから派生したものであり、訓練されたグローバルモデルの性能劣化に繋がる。
非IIDデータセットの修正にはさまざまな試みがあり、主に収集したデータの操作に重点を置いている。
しかし,本論文では,モバイルIoTノードの地理的特性を適切にクラスタリングし,グループ化することで,各FLグループがIDデータセットを達成できる新しい手法を提案する。
まず、デバイス間距離に応じたIoTデータの独立性と同一性に関する実験的な証拠を提供し、次に、FL参加者を分割し、デバイスモビリティを考慮しつつデータセットのほぼIID性を達成する動的クラスタリングおよび部分定常グルーピングアルゴリズムを提案する。
本機構は, グループ単位のデバイス数とグループ単位のデバイス数との結合コストにおいて, ベンチマークグループ化アルゴリズムを少なくとも110倍に向上させ, グループ数を最大0.93グループに減らした。
関連論文リスト
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
我々は,AI強化データ拡張と均衡サンプリング戦略により,IIDからIDDへの非IIDデータ分布を近似する,フェデレーション最適化技術のための新しいプラグインを提案する。
論文 参考訳(メタデータ) (2024-10-31T11:13:47Z) - Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL)は、6G Hyper-Connectivityのための分散機械学習パラダイムのパイオニアとして登場した。
現在のFEELアルゴリズムは、非独立かつ非独立に分散した(非IID)データと競合し、通信コストの上昇とモデルの精度が損なわれる。
我々はクラスタ化データ共有フレームワークを導入し、クラスタヘッドから信頼されたアソシエイトに部分的なデータを選択的に共有することで、データの均一性を緩和する。
実験により, このフレームワークは, 限られた通信環境において, 収束速度が速く, モデル精度が高い非IIDデータセット上で FEEL を促進することを示した。
論文 参考訳(メタデータ) (2024-06-14T07:22:39Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
本研究では,新しいクラスタ化フェデレーション学習(CFL)アプローチと,非独立かつ同一に分散した(非IID)データセットを統合することのメリットについて検討する。
データ分布における非IIDの度合いを測定する一般化ギャップの詳細な理論的解析について述べる。
非IID条件によって引き起こされる課題に対処する解決策は、特性の分析によって提案される。
論文 参考訳(メタデータ) (2024-03-05T17:49:09Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Clustered Data Sharing for Non-IID Federated Learning over Wireless
Networks [39.80420645943706]
Federated Learning (FL)は、IoT(Internet of Things)のデータを活用する分散型機械学習アプローチである。
現在のFLアルゴリズムは、非独立で同一の分散データ(非IID)の課題に直面しており、通信コストが高く、モデルの精度が低下する。
本稿では,デバイス間通信(D2D)を通じて,クラスタヘッドから信頼性の高いアソシエイトへの部分的データ通信を行うクラスタデータ共有フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-17T07:11:02Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
フェデレートラーニング(Federated Learning, FL)は、プライバシ保護のためのコラボレーション機械学習パラダイムである。
本稿では,この課題に対処するため,データヘテロジニアス・ロバストFLアプローチであるFedGSPを提案する。
その結果,FedGSPは7つの最先端アプローチと比較して平均3.7%の精度向上を実現していることがわかった。
論文 参考訳(メタデータ) (2022-01-31T03:15:28Z) - Towards Fast and Accurate Federated Learning with non-IID Data for
Cloud-Based IoT Applications [22.107854601448906]
フェデレートラーニング(FL)はモノのインターネット(IoT)設計で人気を博している。
IoTデバイスによって収集されたデータが非独立かつ同一に分散された(非IID)方法でスキューされると、バニラFL法の精度が保証されない。
本稿では,非IIDデータのトレーニングにおいて,重み分散のデメリットを効果的に低減できる新しいデータベースデバイスグループ化手法を提案する。
論文 参考訳(メタデータ) (2022-01-29T06:49:08Z) - FedCD: Improving Performance in non-IID Federated Learning [0.0]
フェデレーション学習は、それぞれ独自のローカルデータを持つ分散デバイスで、共有モデルを学ぶために広く適用されてきた。
我々はFedCDという新しいアプローチを提案し、類似したデータを動的にグループ化するためにモデルをクローンし削除する。
論文 参考訳(メタデータ) (2020-06-17T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。