論文の概要: Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks
- arxiv url: http://arxiv.org/abs/2410.23824v1
- Date: Thu, 31 Oct 2024 11:13:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:59:50.481982
- Title: Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks
- Title(参考訳): 異種IoTネットワークにおけるロバストフェデレーション学習のためのAIによる生成プラグイン
- Authors: Youngjoon Lee, Jinu Gong, Joonhyuk Kang,
- Abstract要約: フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
我々は,AI強化データ拡張と均衡サンプリング戦略により,IIDからIDDへの非IIDデータ分布を近似する,フェデレーション最適化技術のための新しいプラグインを提案する。
- 参考スコア(独自算出の注目度): 3.536605202672355
- License:
- Abstract: Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized. However, the Non-IID nature of data distribution across devices often hinders model convergence and reduces performance. In this paper, we propose a novel plugin for federated optimization techniques that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy. Key idea is to synthesize additional data for underrepresented classes on each edge device, leveraging generative AI to create a more balanced dataset across the FL network. Additionally, a balanced sampling approach at the central server selectively includes only the most IID-like devices, accelerating convergence while maximizing the global model's performance. Experimental results validate that our approach significantly improves convergence speed and robustness against data imbalance, establishing a flexible, privacy-preserving FL plugin that is applicable even in data-scarce environments.
- Abstract(参考訳): フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
しかし、デバイス間のデータ分散の非IID的な性質は、しばしばモデル収束を妨げ、性能を低下させる。
本稿では,AIにより強化されたデータ拡張とバランスの取れたサンプリング戦略により,IIDからIDDへの非IIDデータ分散を近似する,フェデレーション最適化手法のための新しいプラグインを提案する。
鍵となるアイデアは、各エッジデバイスで表現されていないクラスのための追加データを合成し、生成AIを活用してFLネットワーク全体でよりバランスの取れたデータセットを作成することである。
さらに、中央サーバでのバランスの取れたサンプリングアプローチは、大域的なモデルの性能を最大化しながら収束を加速し、最もIDIライクなデバイスのみを選択的に含む。
実験により,データ不均衡に対する収束速度とロバスト性を大幅に向上し,データ共有環境にも適用可能なフレキシブルでプライバシ保護のFLプラグインが確立された。
関連論文リスト
- Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL)は、6G Hyper-Connectivityのための分散機械学習パラダイムのパイオニアとして登場した。
現在のFEELアルゴリズムは、非独立かつ非独立に分散した(非IID)データと競合し、通信コストの上昇とモデルの精度が損なわれる。
我々はクラスタ化データ共有フレームワークを導入し、クラスタヘッドから信頼されたアソシエイトに部分的なデータを選択的に共有することで、データの均一性を緩和する。
実験により, このフレームワークは, 限られた通信環境において, 収束速度が速く, モデル精度が高い非IIDデータセット上で FEEL を促進することを示した。
論文 参考訳(メタデータ) (2024-06-14T07:22:39Z) - Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data [9.045647166114916]
フェデレートラーニング(FL)は、分散的かつ協調的なモデルトレーニングのための有望なパラダイムである。
FLは、非独立分散(Non-IID)データ分散に直面すると、パフォーマンスの大幅な低下と収束性の低下に悩まされる。
我々は、最先端のテキスト・ツー・イメージ基盤モデルの強力な能力を活用する新しいアプローチであるGen-FedSDを紹介する。
論文 参考訳(メタデータ) (2024-05-13T16:57:48Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL)は、ネットワークデバイス上での機械学習モデルの分散トレーニングのためのプライバシ保護メカニズムを提供する。
本稿では,FLにおけるデータ不完全性問題に対処する新しいアプローチであるFLIGANを提案する。
本手法はFLのプライバシ要件に則り,プロセス内の実際のデータを共有せずに合成データをフェデレートした方法で生成する。
論文 参考訳(メタデータ) (2024-03-25T16:49:38Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - Analysis and Optimal Edge Assignment For Hierarchical Federated Learning
on Non-IID Data [43.32085029569374]
フェデレーション学習アルゴリズムは、ユーザのデバイスに格納された分散および多様なデータを活用して、グローバルな現象を学習することを目的としている。
参加者のデータが強く歪んだ場合(例えば、非iidの場合)、ローカルモデルはローカルデータに過剰に適合し、低パフォーマンスなグローバルモデルに繋がる。
ユーザエッジ層にFederated Gradient Descent、エッジクラウド層にFederated Averagingを実行する階層学習システムを提案する。
論文 参考訳(メタデータ) (2020-12-10T12:18:13Z) - FedCD: Improving Performance in non-IID Federated Learning [0.0]
フェデレーション学習は、それぞれ独自のローカルデータを持つ分散デバイスで、共有モデルを学ぶために広く適用されてきた。
我々はFedCDという新しいアプローチを提案し、類似したデータを動的にグループ化するためにモデルをクローンし削除する。
論文 参考訳(メタデータ) (2020-06-17T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。