Geographical Node Clustering and Grouping to Guarantee Data IIDness in Federated Learning
- URL: http://arxiv.org/abs/2410.15693v1
- Date: Mon, 21 Oct 2024 07:03:15 GMT
- Title: Geographical Node Clustering and Grouping to Guarantee Data IIDness in Federated Learning
- Authors: Minkwon Lee, Hyoil Kim, Changhee Joo,
- Abstract summary: A major challenge of Federated learning (FL) is the non-IID dataset problem.
This paper proposes a novel approach to ensure data IIDness by properly clustering and grouping mobile IoT nodes.
Our mechanism significantly outperforms benchmark grouping algorithms at least by 110 times in terms of the joint cost between the number of dropout devices and the evenness in per-group device count.
- Score: 2.903020332386652
- License:
- Abstract: Federated learning (FL) is a decentralized AI mechanism suitable for a large number of devices like in smart IoT. A major challenge of FL is the non-IID dataset problem, originating from the heterogeneous data collected by FL participants, leading to performance deterioration of the trained global model. There have been various attempts to rectify non-IID dataset, mostly focusing on manipulating the collected data. This paper, however, proposes a novel approach to ensure data IIDness by properly clustering and grouping mobile IoT nodes exploiting their geographical characteristics, so that each FL group can achieve IID dataset. We first provide an experimental evidence for the independence and identicalness features of IoT data according to the inter-device distance, and then propose Dynamic Clustering and Partial-Steady Grouping algorithms that partition FL participants to achieve near-IIDness in their dataset while considering device mobility. Our mechanism significantly outperforms benchmark grouping algorithms at least by 110 times in terms of the joint cost between the number of dropout devices and the evenness in per-group device count, with a mild increase in the number of groups only by up to 0.93 groups.
Related papers
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized.
We propose a novel plugin for federated optimization techniques that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy.
arXiv Detail & Related papers (2024-10-31T11:13:47Z) - Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL) emerges as a pioneering distributed machine learning paradigm for the 6G Hyper-Connectivity.
Current FEEL algorithms struggle with non-independent and non-identically distributed (non-IID) data, leading to elevated communication costs and compromised model accuracy.
We introduce a clustered data sharing framework, mitigating data heterogeneity by selectively sharing partial data from cluster heads to trusted associates.
Experiments show that the proposed framework facilitates FEEL on non-IID datasets with faster convergence rate and higher model accuracy in a limited communication environment.
arXiv Detail & Related papers (2024-06-14T07:22:39Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Clustered Data Sharing for Non-IID Federated Learning over Wireless
Networks [39.80420645943706]
Federated Learning (FL) is a distributed machine learning approach to leverage data from the Internet of Things (IoT)
Current FL algorithms face the challenges of non-independent and identically distributed (non-IID) data, which causes high communication costs and model accuracy declines.
We propose a clustered data sharing framework which spares the partial data from cluster heads to credible associates through device-to-device (D2D) communication.
arXiv Detail & Related papers (2023-02-17T07:11:02Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm.
We propose a data heterogeneous-robust FL approach, FedGSP, to address this challenge.
We show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-31T03:15:28Z) - Towards Fast and Accurate Federated Learning with non-IID Data for
Cloud-Based IoT Applications [22.107854601448906]
Federated Learning (FL) is becoming popular in Internet of Things (IoT) design.
When the data collected by IoT devices are skewed in a non-independent and identically distributed (non-IID) manner, the accuracy of vanilla FL method cannot be guaranteed.
This paper proposes a novel data-based device grouping approach that can effectively reduce the disadvantages of weight divergence during the training of non-IID data.
arXiv Detail & Related papers (2022-01-29T06:49:08Z) - FedCD: Improving Performance in non-IID Federated Learning [0.0]
Federated learning has been widely applied to enable decentralized devices, which each have their own local data, to learn a shared model.
We present a novel approach, FedCD, which clones and deletes models to dynamically group devices with similar data.
arXiv Detail & Related papers (2020-06-17T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.