Students Rather Than Experts: A New AI For Education Pipeline To Model More Human-Like And Personalised Early Adolescences
- URL: http://arxiv.org/abs/2410.15701v1
- Date: Mon, 21 Oct 2024 07:18:24 GMT
- Title: Students Rather Than Experts: A New AI For Education Pipeline To Model More Human-Like And Personalised Early Adolescences
- Authors: Yiping Ma, Shiyu Hu, Xuchen Li, Yipei Wang, Shiqing Liu, Kang Hao Cheong,
- Abstract summary: This study focuses on language learning as a context for modeling virtual student agents.
By curating a dataset of personalized teacher-student interactions with various personality traits, we conduct multi-dimensional evaluation experiments.
- Score: 11.576679362717478
- License:
- Abstract: The capabilities of large language models (LLMs) have been applied in expert systems across various domains, providing new opportunities for AI in Education. Educational interactions involve a cyclical exchange between teachers and students. Current research predominantly focuses on using LLMs to simulate teachers, leveraging their expertise to enhance student learning outcomes. However, the simulation of students, which could improve teachers' instructional skills, has received insufficient attention due to the challenges of modeling and evaluating virtual students. This research asks: Can LLMs be utilized to develop virtual student agents that mimic human-like behavior and individual variability? Unlike expert systems focusing on knowledge delivery, virtual students must replicate learning difficulties, emotional responses, and linguistic uncertainties. These traits present significant challenges in both modeling and evaluation. To address these issues, this study focuses on language learning as a context for modeling virtual student agents. We propose a novel AI4Education framework, called SOE (Scene-Object-Evaluation), to systematically construct LVSA (LLM-based Virtual Student Agents). By curating a dataset of personalized teacher-student interactions with various personality traits, question types, and learning stages, and fine-tuning LLMs using LoRA, we conduct multi-dimensional evaluation experiments. Specifically, we: (1) develop a theoretical framework for generating LVSA; (2) integrate human subjective evaluation metrics into GPT-4 assessments, demonstrating a strong correlation between human evaluators and GPT-4 in judging LVSA authenticity; and (3) validate that LLMs can generate human-like, personalized virtual student agents in educational contexts, laying a foundation for future applications in pre-service teacher training and multi-agent simulation environments.
Related papers
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Simulating Classroom Education with LLM-Empowered Agents [52.62324491261461]
SimClass is a multi-agent classroom simulation framework involving user participation.
We recognize representative class roles and introduce a novel class control mechanism for automatic classroom teaching.
We demonstrate that LLMs can simulate traditional classroom interaction patterns effectively while enhancing user's experience.
arXiv Detail & Related papers (2024-06-27T14:51:07Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
We introduce a suite of models and evaluation methods we call AdapT.
AToM is a new probabilistic model for adaptive teaching that jointly infers students' past beliefs and optimize for the correctness of future beliefs.
Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive models for solving it.
arXiv Detail & Related papers (2024-05-07T17:05:27Z) - Student Data Paradox and Curious Case of Single Student-Tutor Model: Regressive Side Effects of Training LLMs for Personalized Learning [25.90420385230675]
The pursuit of personalized education has led to the integration of Large Language Models (LLMs) in developing intelligent tutoring systems.
Our research uncovers a fundamental challenge in this approach: the Student Data Paradox''
This paradox emerges when LLMs, trained on student data to understand learner behavior, inadvertently compromise their own factual knowledge and reasoning abilities.
arXiv Detail & Related papers (2024-04-23T15:57:55Z) - Personality-aware Student Simulation for Conversational Intelligent Tutoring Systems [34.760230622675365]
Intelligent Tutoring Systems (ITSs) can provide personalized and self-paced learning experience.
The emergence of large language models (LLMs) further enables better human-machine interaction.
LLMs can produce diverse student responses according to the given language ability and personality traits.
arXiv Detail & Related papers (2024-04-10T06:03:13Z) - MathVC: An LLM-Simulated Multi-Character Virtual Classroom for Mathematics Education [19.549398447035376]
Large language models (LLMs) have recently demonstrated strong capability in both modeling mathematical problems and simulating characters.
We present MATHVC, the very first LLM-powered virtual classroom containing multiple LLM-simulated student characters.
We propose three innovations: integrating MM domain knowledge into the simulation, defining a symbolic schema as the ground for character simulation, and designing a meta planner at the platform level to drive the conversational procedure.
arXiv Detail & Related papers (2024-04-10T03:35:51Z) - EduAgent: Generative Student Agents in Learning [15.215078619481732]
Student simulation in online education is important to address dynamic learning behaviors of students with diverse backgrounds.
Existing simulation models based on deep learning usually need massive training data, lacking prior knowledge in educational contexts.
This work proposes EduAgent, a novel generative agent framework incorporating cognitive prior knowledge.
arXiv Detail & Related papers (2024-03-23T18:19:17Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs [13.262711792955377]
This study explores the effectiveness of Large Language Models (LLMs) for automated essay scoring.
We propose an open-source LLM-based AES system, inspired by the dual-process theory.
We find that our system not only automates the grading process but also enhances the performance and efficiency of human graders.
arXiv Detail & Related papers (2024-01-12T07:50:10Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
Large language models (LLMs) offer possibility for resolving this issue by comprehending individual requests.
This paper reviews the recently emerged LLM research related to educational capabilities, including mathematics, writing, programming, reasoning, and knowledge-based question answering.
arXiv Detail & Related papers (2023-12-27T14:37:32Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
We rigorously analyze various generative language models on two dialog tutoring datasets for language learning.
We find that although current approaches can model tutoring in constrained learning scenarios, they perform poorly in less constrained scenarios.
Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring.
arXiv Detail & Related papers (2023-01-24T11:00:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.