論文の概要: When LLMs Learn to be Students: The SOEI Framework for Modeling and Evaluating Virtual Student Agents in Educational Interaction
- arxiv url: http://arxiv.org/abs/2410.15701v2
- Date: Thu, 22 May 2025 10:19:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.674512
- Title: When LLMs Learn to be Students: The SOEI Framework for Modeling and Evaluating Virtual Student Agents in Educational Interaction
- Title(参考訳): LLMが学生になるとき--教育相互作用における仮想学生エージェントのモデリングと評価のためのSOEIフレームワーク
- Authors: Yiping Ma, Shiyu Hu, Xuchen Li, Yipei Wang, Yuqing Chen, Shiqing Liu, Kang Hao Cheong,
- Abstract要約: 教室シナリオにおける人格対応型仮想学生エージェント(LVSA)の構築と評価のためのSOEIフレームワークを提案する。
LoRAファインチューニングとエキスパートインフォームドプロンプト設計により,5つのLVSAをBig Five特性に基づいて生成する。
その結果,(1)LLMをベースとした学生エージェントのための教育的,心理的に基盤とした生成パイプライン,(2)行動リアリズムのためのハイブリッドでスケーラブルな評価フレームワーク,(3)LVSAsの教育的有用性に関する実証的な知見が得られた。
- 参考スコア(独自算出の注目度): 12.070907646464537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in large language models (LLMs) have enabled intelligent tutoring systems, yet the development of LLM-based Virtual Student Agents (LVSAs) remains underexplored. Such agents are essential for teacher-facing applications, where simulating diverse learner traits can support adaptive instruction and pedagogical skill development. However, current methods lack principled personality modeling, scalable evaluation of behavioral consistency, and empirical validation in interactive teaching settings. We propose the SOEI framework, a structured pipeline comprising Scene, Object, Evaluation, and Interaction, for constructing and evaluating personality-aligned LVSAs in classroom scenarios. Leveraging Chinese language instruction as a cognitively and emotionally rich testbed, we generate five LVSAs based on Big Five traits through LoRA fine-tuning and expert-informed prompt design. Their behavioral realism and personality coherence are assessed using a hybrid human & GPT-4 evaluation and a multi-dimensional annotation protocol. Through controlled experiments with real pre-service teachers, we demonstrate that LVSAs can elicit adaptive teaching strategies and maintain trait-consistent behavior across multi-turn dialogues. Our results provide: (1) an educationally and psychologically grounded generation pipeline for LLM-based student agents; (2) a hybrid, scalable evaluation framework for behavioral realism; and (3) empirical insights into the pedagogical utility of LVSAs in shaping instructional adaptation. By embedding LVSAs into both generative modeling and human-in-the-loop teaching, SOEI bridges AI for Education (AI4Edu) and Education for AI (Edu4AI), positioning classroom interaction as a rigorous testbed for controllability, personality alignment, and human-likeness in large language models.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、インテリジェントなチューリングシステムを実現しているが、LLMベースの仮想学生エージェント(LVSA)の開発はいまだに未検討である。
このようなエージェントは、多様な学習者の特性をシミュレートし、適応的な指導と教育的スキル開発を支援する教師向けアプリケーションに不可欠である。
しかし、現在の手法では、対話型授業環境における個性モデリング、行動整合性のスケーラブルな評価、実証的検証が欠如している。
本稿では,Scene, Object, Evaluation, and Interactionからなる構造化パイプラインであるSOEIフレームワークを提案し,教室シナリオにおけるパーソナライズされたLVSAの構築と評価を行う。
中国語の指導を認知的・感情的に豊かなテストベッドとして活用し、LoRAの微調整と専門家によるインフォームドプロンプト設計により5つのLVSAを生成する。
それらの行動リアリズムとパーソナリティコヒーレンスを、ハイブリッドヒューマン&GPT-4評価と多次元アノテーションプロトコルを用いて評価する。
実戦前教師による制御実験を通じて,LVSAは適応型教育戦略を取り入れ,多ターン対話における特性一貫性の維持を実証する。
その結果,(1)LLMをベースとした学生エージェントのための教育的,心理的に基盤とした生成パイプライン,(2)行動リアリズムのためのハイブリッドでスケーラブルな評価フレームワーク,(3)LVSAsの教育的有用性に関する実証的な知見が得られた。
ジェネレーティブ・モデリングとヒューマン・イン・ザ・ループ教育の両方にLVSAを組み込むことで、SOEIはAI for Education(AI4Edu)とAI for Education(Edu4AI)を橋渡しし、大規模な言語モデルにおいて、制御性、パーソナリティアライメント、人間類似性のための厳密なテストベッドとして教室の相互作用を位置づける。
関連論文リスト
- Exploring LLM-based Student Simulation for Metacognitive Cultivation [33.346260553878984]
高品質なシミュレーション学生エージェントを自動生成・フィルタリングするパイプラインを提案する。
我々の研究は、パーソナライズされた学習と教育アセスメントにおける幅広い応用の道を開く。
論文 参考訳(メタデータ) (2025-02-17T11:12:47Z) - Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
我々は、外国語教育(FLE)において、大きな言語モデル(LLM)が効果的な家庭教師として機能する可能性を主張する。
具体的には、(1)データエンハンサーとして、(2)学習教材の作成や学生シミュレーションとして、(2)タスク予測器として、学習者の評価や学習経路の最適化に、(3)エージェントとして、そして、パーソナライズされた包括的教育を可能にする3つの重要な役割を果たせる。
論文 参考訳(メタデータ) (2025-02-08T06:48:49Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Simulating Classroom Education with LLM-Empowered Agents [52.62324491261461]
SimClassは、ユーザ参加を含むマルチエージェントの教室シミュレーションフレームワークである。
代表的クラスの役割を認識し、自動授業のための新しいクラス制御機構を導入する。
我々は,LLMが従来の教室のインタラクションパターンを効果的にシミュレートし,ユーザエクスペリエンスを向上させることを実証した。
論文 参考訳(メタデータ) (2024-06-27T14:51:07Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
本稿ではAdapTと呼ばれる一連のモデルと評価手法を紹介する。
AToMは、学生の過去の信念を共同で推論し、将来の信念の正しさを最適化する適応教育の新しい確率論的モデルである。
本研究は,適応型学習課題の難しさと,それを解決するための学習適応モデルの可能性を両立させるものである。
論文 参考訳(メタデータ) (2024-05-07T17:05:27Z) - Student Data Paradox and Curious Case of Single Student-Tutor Model: Regressive Side Effects of Training LLMs for Personalized Learning [25.90420385230675]
パーソナライズされた教育の追求は、知的学習システムの開発におけるLarge Language Models(LLM)の統合につながった。
我々の研究は、このアプローチの根本的な課題を明らかにする:学生データパラドックス」
このパラドックスは、学習者の行動を理解するために学生データに基づいて訓練されたLLMが、故意に自身の事実的知識と推論能力を損なうときに現れる。
論文 参考訳(メタデータ) (2024-04-23T15:57:55Z) - Personality-aware Student Simulation for Conversational Intelligent Tutoring Systems [34.760230622675365]
Intelligent Tutoring Systems(ITS)は、パーソナライズされたセルフペースの学習体験を提供する。
大規模言語モデル(LLM)の出現により、より優れた人間と機械の相互作用が可能になる。
LLMは、与えられた言語能力と性格特性に応じて、多様な学生の反応を生成することができる。
論文 参考訳(メタデータ) (2024-04-10T06:03:13Z) - MathVC: An LLM-Simulated Multi-Character Virtual Classroom for Mathematics Education [19.549398447035376]
大規模言語モデル(LLM)は、最近、数学的な問題をモデル化し、文字をシミュレートする双方で強力な能力を示した。
複数のLDMを模擬した学生用仮想教室であるMATHVCについて紹介する。
シミュレーションにMMドメイン知識を統合すること、文字シミュレーションの基盤としてシンボルスキーマを定義すること、対話手順を推進するためにプラットフォームレベルでメタプランナを設計すること、の3つの革新を提案する。
論文 参考訳(メタデータ) (2024-04-10T03:35:51Z) - EduAgent: Generative Student Agents in Learning [15.215078619481732]
オンライン教育における学生シミュレーションは,様々な背景を持つ学生の動的学習行動に対処するために重要である。
ディープラーニングに基づく既存のシミュレーションモデルでは、教育的文脈における事前知識が欠如しているため、大規模なトレーニングデータが必要である。
本研究は,認知的事前知識を取り入れた新しい生成エージェントフレームワークであるEduAgentを提案する。
論文 参考訳(メタデータ) (2024-03-23T18:19:17Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs [13.262711792955377]
本研究では,Large Language Models (LLMs) のエッセイ自動評価における有効性について検討した。
本稿では,デュアルプロセス理論にインスパイアされたオープンソースのLLMベースのAESシステムを提案する。
本システムでは, 学習過程の自動化だけでなく, 成績や効率の向上も図っている。
論文 参考訳(メタデータ) (2024-01-12T07:50:10Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
大規模言語モデル(LLM)は、個々の要求を解釈することでこの問題を解決する可能性を提供する。
本稿では, 数学, 文章, プログラミング, 推論, 知識に基づく質問応答など, 教育能力に関する最近のLLM研究を概観する。
論文 参考訳(メタデータ) (2023-12-27T14:37:32Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。