論文の概要: A Theory of Adaptive Scaffolding for LLM-Based Pedagogical Agents
- arxiv url: http://arxiv.org/abs/2508.01503v1
- Date: Sat, 02 Aug 2025 21:58:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.908129
- Title: A Theory of Adaptive Scaffolding for LLM-Based Pedagogical Agents
- Title(参考訳): LLM系ペダゴジカルエージェントの適応スキャフォールディングの理論
- Authors: Clayton Cohn, Surya Rayala, Namrata Srivastava, Joyce Horn Fonteles, Shruti Jain, Xinying Luo, Divya Mereddy, Naveeduddin Mohammed, Gautam Biswas,
- Abstract要約: 大規模言語モデル(LLM)は、学生の学習を支援するために意味のある対話を行う教育エージェントを作成する新しい機会を提供する。
本研究では,STEM+C学習に着目したLLMエージェントの適応的足場構築のための,エビデンス中心設計と社会認知理論を組み合わせたフレームワークを提案する。
この結果から,Inquizzitorは中核的な学習理論に沿った高品質な評価とインタラクションを提供し,教師が学生に価値をもたらす効果的な指導を提供することがわかった。
- 参考スコア(独自算出の注目度): 3.6084561124905297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) present new opportunities for creating pedagogical agents that engage in meaningful dialogue to support student learning. However, the current use of LLM systems like ChatGPT in classrooms often lacks the solid theoretical foundation found in earlier intelligent tutoring systems. To bridge this gap, we propose a framework that combines Evidence-Centered Design with Social Cognitive Theory for adaptive scaffolding in LLM-based agents focused on STEM+C learning. We illustrate this framework with Inquizzitor, an LLM-based formative assessment agent that integrates human-AI hybrid intelligence and provides feedback grounded in cognitive science principles. Our findings show that Inquizzitor delivers high-quality assessment and interaction aligned with core learning theories, offering teachers effective guidance that students value. This research underscores the potential for theory-driven LLM integration in education, highlighting the ability of these systems to provide adaptive and principled instruction.
- Abstract(参考訳): 大規模言語モデル(LLM)は、学生の学習を支援するために意味のある対話を行う教育エージェントを作成する新しい機会を提供する。
しかし、現在の教室でのChatGPTのようなLLMシステムの使用は、初期の知的な家庭教師システムに見られるしっかりとした理論的な基礎を欠いていることが多い。
このギャップを埋めるために,STEM+C学習に着目したLLMエージェントの適応的足場構築のための,エビデンス中心設計と社会認知理論を組み合わせたフレームワークを提案する。
我々は,人間とAIのハイブリッド・インテリジェンスを統合し,認知科学の原則に基づくフィードバックを提供するLLMベースのフォーマット評価エージェントであるInquizzitorを用いて,このフレームワークを解説する。
この結果から,Inquizzitorは中核的な学習理論に沿った質の高い評価とインタラクションを提供し,教師が学生に価値をもたらす効果的な指導を提供することがわかった。
本研究は、理論駆動型LLMの教育における統合の可能性を強調し、これらのシステムによる適応的かつ原則化された教育を提供する能力を強調した。
関連論文リスト
- Partnering with AI: A Pedagogical Feedback System for LLM Integration into Programming Education [19.441958600393342]
本稿では,大規模言語モデル(LLM)によるフィードバック生成のための新しいフレームワークを提案する。
本研究は, 教員が枠組みに整合すると, LLMが学生を効果的に支援できると考えていることを示唆する。
しかし、動的な教室環境にフィードバックを適応できないなど、いくつかの制限があった。
論文 参考訳(メタデータ) (2025-07-01T03:48:48Z) - Dialogic Pedagogy for Large Language Models: Aligning Conversational AI with Proven Theories of Learning [1.2691047660244332]
大言語モデル(LLM)は、リッチな会話学習体験を可能にすることによって、教育を変革している。
本稿では,LLMをベースとした会話エージェントが高等教育にどのように利用されているのかを概観する。
論文 参考訳(メタデータ) (2025-06-24T10:19:09Z) - From Problem-Solving to Teaching Problem-Solving: Aligning LLMs with Pedagogy using Reinforcement Learning [76.09281171131941]
大規模言語モデル(LLM)は教育を変換することができるが、直接質問応答のための最適化はしばしば効果的な教育を損なう。
オンライン強化学習(RL)に基づくアライメントフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-21T15:00:07Z) - KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation [78.96590724864606]
我々はKOR-BenchとGymnasiumに触発された動的評価プラットフォームであるKORGym(Knowledge Orthogonal Reasoning Gymnasium)を紹介する。
KORGymはテキストまたはビジュアル形式で50以上のゲームを提供し、強化学習シナリオによるインタラクティブでマルチターンアセスメントをサポートする。
論文 参考訳(メタデータ) (2025-05-20T16:06:32Z) - Enhanced Bloom's Educational Taxonomy for Fostering Information Literacy in the Era of Large Language Models [16.31527042425208]
本稿では,大規模言語モデル(LLM)を用いた学生の情報リテラシー(IL)の認識と評価を目的としたLLMによるブルーム教育分類法を提案する。
このフレームワークは、LLMを使用するために必要な認知能力に対応するILを、Exploration & ActionとCreation & Metacognitionの2つの異なるステージに分類する。
論文 参考訳(メタデータ) (2025-03-25T08:23:49Z) - LLM Agents for Education: Advances and Applications [49.3663528354802]
大規模言語モデル(LLM)エージェントは、タスクの自動化と多様な教育アプリケーションにおけるイノベーションの推進において、顕著な能力を示した。
本調査は、LLMエージェントの総合的技術概要を提供することを目的としており、学習者や教育者のより大きな利益に対する影響を高めるために、さらなる研究と協力を促進することを目的としている。
論文 参考訳(メタデータ) (2025-03-14T11:53:44Z) - Investigating the Zone of Proximal Development of Language Models for In-Context Learning [59.91708683601029]
大規模言語モデル(LLM)の文脈内学習(ICL)の振る舞いを分析するための学習分析フレームワークを提案する。
我々は,各例のモデル性能に基づいて,LLMのZPDを測定することにより,ZPD理論をICLに適用する。
本研究はICLの複雑な多面的動作を明らかにし,この手法の理解と活用に関する新たな知見を提供する。
論文 参考訳(メタデータ) (2025-02-10T19:36:21Z) - When LLMs Learn to be Students: The SOEI Framework for Modeling and Evaluating Virtual Student Agents in Educational Interaction [12.070907646464537]
教室シナリオにおける人格対応型仮想学生エージェント(LVSA)の構築と評価のためのSOEIフレームワークを提案する。
LoRAファインチューニングとエキスパートインフォームドプロンプト設計により,5つのLVSAをBig Five特性に基づいて生成する。
その結果,(1)LLMをベースとした学生エージェントのための教育的,心理的に基盤とした生成パイプライン,(2)行動リアリズムのためのハイブリッドでスケーラブルな評価フレームワーク,(3)LVSAsの教育的有用性に関する実証的な知見が得られた。
論文 参考訳(メタデータ) (2024-10-21T07:18:24Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Simulating Classroom Education with LLM-Empowered Agents [48.26286735827104]
大型言語モデル (LLM) は、様々な知的教育タスクに応用され、教育支援を行っている。
マルチエージェント型教室シミュレーション教育フレームワークSimClassを提案する。
代表的クラスの役割を認識し、自動授業のための新しいクラス制御機構を導入する。
論文 参考訳(メタデータ) (2024-06-27T14:51:07Z) - Enhancing LLM-Based Feedback: Insights from Intelligent Tutoring Systems and the Learning Sciences [0.0]
この研究は、ITSのフィードバック生成に関する以前の研究を通し、AIEDの研究を慎重に支援するものである。
本論文の主な貢献は次のとおりである。 生成AIの時代におけるフィードバック生成において、より慎重で理論的に基礎付けられた手法を適用すること。
論文 参考訳(メタデータ) (2024-05-07T20:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。