論文の概要: LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec
- arxiv url: http://arxiv.org/abs/2410.15764v2
- Date: Sun, 22 Dec 2024 12:48:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:51:09.237044
- Title: LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec
- Title(参考訳): LSCodec:低ビット化と話者分離型離散音声コーデック
- Authors: Yiwei Guo, Zhihan Li, Chenpeng Du, Hankun Wang, Xie Chen, Kai Yu,
- Abstract要約: LSCodecは低話者分離能力と低話者分離能力を持つ離散音声である。
再構成実験により、LSCodecは、単一のコードブックだけで、ベースラインよりも語彙サイズが小さい、優れた知性およびオーディオ品質を示す。
- 参考スコア(独自算出の注目度): 14.7377193484733
- License:
- Abstract: Although discrete speech tokens have exhibited strong potential for language model-based speech generation, their high bitrates and redundant timbre information restrict the development of such models. In this work, we propose LSCodec, a discrete speech codec that has both low bitrate and speaker decoupling ability. LSCodec adopts a three-stage unsupervised training framework with a speaker perturbation technique. A continuous information bottleneck is first established, followed by vector quantization that produces a discrete speaker-decoupled space. A discrete token vocoder finally refines acoustic details from LSCodec. By reconstruction experiments, LSCodec demonstrates superior intelligibility and audio quality with only a single codebook and smaller vocabulary size than baselines. The 25Hz version of LSCodec also achieves the lowest bitrate (0.25kbps) of codecs so far with decent quality. Voice conversion evaluations prove the satisfactory speaker disentanglement of LSCodec, and ablation study further verifies the effectiveness of the proposed training framework.
- Abstract(参考訳): 離散音声トークンは言語モデルに基づく音声生成に強い可能性を示しているが、その高ビットレートと冗長な音色情報はそのようなモデルの開発を制限している。
本研究では,低ビットレートと話者分離機能を備えた離散音声コーデックLSCodecを提案する。
LSCodecは、話者摂動技術を備えた3段階の教師なしトレーニングフレームワークを採用している。
連続的な情報ボトルネックが最初に確立され、次いで離散的な話者分離空間を生成するベクトル量子化が続く。
離散トークンヴォコーダはついにLSCodecから音響の詳細を洗練する。
再構成実験により、LSCodecは、単一のコードブックだけで、ベースラインよりも語彙サイズが小さい、優れた知性およびオーディオ品質を示す。
LSCodecの25Hzバージョンは、コーデックの最低ビットレート(0.25kbps)を良好な品質で達成している。
音声変換評価は,LSCodecの話者の絡み合いが良好であることを証明し,この学習フレームワークの有効性をさらに検証する。
関連論文リスト
- Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference [10.909997817643905]
提案する低フレームレート音声符号化(LFSC: Low Frame-rate Speech Codec)は, 有限スカラー量子化と大規模言語モデルによる対角訓練を利用して, 1.89kbps, 21.5fpsの高品質音声圧縮を実現するニューラルオーディオである。
本稿では,従来のモデルに匹敵する品質を向上しつつ,テキスト音声モデルの3倍高速な推定が可能であることを実証する。
論文 参考訳(メタデータ) (2024-09-18T16:39:10Z) - Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model [36.61105228468503]
X-Codecは、Residual Vector Quantizationステージの前に、事前訓練されたセマンティックエンコーダのセマンティック機能を組み込んでいる。
X-Codecは音声合成タスクのWERを大幅に削減し、これらの利点を非音声アプリケーションに拡張する。
音声合成における意味情報の統合は,音声生成における言語モデル全体の性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-08-30T10:24:07Z) - VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment [101.2489492032816]
VALL-E Rは、堅牢で効率的なゼロショットテキスト音声合成システムである。
この研究は、失語症に罹患した人々のためのスピーチの作成を含む有意義なプロジェクトに適用される可能性がある。
論文 参考訳(メタデータ) (2024-06-12T04:09:44Z) - Autoregressive Diffusion Transformer for Text-to-Speech Synthesis [39.32761051774537]
連続空間$mathbb Rd$のベクトル列として音響を符号化し、これらの列を自己回帰的に生成する。
高ビットレート連続音声表現は、ほとんど欠陥のない再構成を可能にし、我々のモデルは、ほぼ完璧な音声編集を実現できる。
論文 参考訳(メタデータ) (2024-06-08T18:57:13Z) - SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound [40.810505707522324]
SemantiCodecは、様々なオーディオタイプで毎秒100トークン未満にオーディオを圧縮するように設計されている。
本稿では,セマンティコーデックが再現性に関する最先端の記述を著しく上回っていることを示す。
また,SemantiCodecはすべての評価音声コーデックよりもはるかにリッチな意味情報を含んでいることも示唆した。
論文 参考訳(メタデータ) (2024-04-30T22:51:36Z) - LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT [65.69648099999439]
Generative Pre-trained Transformer (GPT) モデルは、様々な自然言語処理タスクにおいて顕著なパフォーマンスを実現している。
音声認識, 理解, 生成のための新しい音声・テキストGPTベースのLLMであるLauraGPTを提案する。
論文 参考訳(メタデータ) (2023-10-07T03:17:59Z) - FunCodec: A Fundamental, Reproducible and Integrable Open-source Toolkit
for Neural Speech Codec [55.95078490630001]
本稿では,オープンソースの音声処理ツールキット FunASR を拡張した基本的ニューラル音声ツールキット FunCodec について述べる。
FunCodecは、SoundStreamやEncodecといった最新のニューラルスピーチモデルに対して、再現可能なトレーニングレシピと推論スクリプトを提供する。
FunCodecとともに、事前訓練されたモデルも提供される。
論文 参考訳(メタデータ) (2023-09-14T03:18:24Z) - Large-scale unsupervised audio pre-training for video-to-speech
synthesis [64.86087257004883]
音声合成は、話者の無声映像から音声信号を再構成する作業である。
本稿では,24kHzで3,500時間以上のオーディオデータをエンコーダ・デコーダモデルでトレーニングすることを提案する。
次に、事前学習したデコーダを用いて、音声合成タスクの音声デコーダを初期化する。
論文 参考訳(メタデータ) (2023-06-27T13:31:33Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
本稿では,音響単位,すなわち擬似符号を用いたエンコーダ・デコーダネットワークのための2つの事前学習タスクを提案する。
提案したSpeech2Cは,デコーダを事前学習することなく,単語誤り率(WER)を19.2%削減できる。
論文 参考訳(メタデータ) (2022-03-31T15:33:56Z) - SoundStream: An End-to-End Neural Audio Codec [78.94923131038682]
本稿では,音声,音楽,一般音声を効率よく圧縮できる新しいニューラルオーディオシステムSoundStreamを紹介する。
SoundStreamは完全な畳み込みエンコーダ/デコーダネットワークと残留ベクトル量子化器に頼っている。
エンコーダまたはデコーダ側で、追加のレイテンシなしで、共同圧縮と拡張を行うことができます。
論文 参考訳(メタデータ) (2021-07-07T15:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。