論文の概要: Deep Implicit Optimization for Robust and Flexible Image Registration
- arxiv url: http://arxiv.org/abs/2406.07361v2
- Date: Fri, 18 Oct 2024 14:38:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:22:44.646649
- Title: Deep Implicit Optimization for Robust and Flexible Image Registration
- Title(参考訳): ロバストかつフレキシブルな画像登録のための深部命令最適化
- Authors: Rohit Jena, Pratik Chaudhari, James C. Gee,
- Abstract要約: ディープネットワークの層として最適化を取り入れることで,古典的手法と学習的手法のギャップを埋める。
繰り返し最適化によるエンド・ツー・エンドの識別を暗黙的に行うことで、学習した特徴は登録とラベル認識である。
我々のフレームワークは、ドメイン内のデータセットで優れたパフォーマンスを示し、ドメインシフトに依存しない。
- 参考スコア(独自算出の注目度): 20.34181966545357
- License:
- Abstract: Deep Learning in Image Registration (DLIR) methods have been tremendously successful in image registration due to their speed and ability to incorporate weak label supervision at training time. However, DLIR methods forego many of the benefits of classical optimization-based methods. The functional nature of deep networks do not guarantee that the predicted transformation is a local minima of the registration objective, the representation of the transformation (displacement/velocity field/affine) is fixed, and the networks are not robust to domain shift. Our method aims to bridge this gap between classical and learning methods by incorporating optimization as a layer in a deep network. A deep network is trained to predict multi-scale dense feature images that are registered using a black box iterative optimization solver. This optimal warp is then used to minimize image and label alignment errors. By implicitly differentiating end-to-end through an iterative optimization solver, our learned features are registration and label-aware, and the warp functions are guaranteed to be local minima of the registration objective in the feature space. Our framework shows excellent performance on in-domain datasets, and is agnostic to domain shift such as anisotropy and varying intensity profiles. For the first time, our method allows switching between arbitrary transformation representations (free-form to diffeomorphic) at test time with zero retraining. End-to-end feature learning also facilitates interpretability of features, and out-of-the-box promptability using additional label-fidelity terms at inference.
- Abstract(参考訳): 画像登録におけるDeep Learning in Image Registration (DLIR) 手法は,学習時にラベル管理が弱いため,画像登録において極めて成功している。
しかし、DLIR法は古典的な最適化手法の利点の多くを先導している。
深層ネットワークの機能的性質は、予測された変換が登録対象の局所最小値であり、変換(変位/速度場/アフィン)の表現が固定され、ネットワークがドメインシフトに対して堅牢でないことを保証しない。
提案手法は,従来の手法と学習手法のギャップを,ディープネットワークの層として最適化を取り入れることで埋めることを目的としている。
ブラックボックスイテレーティブ・オプティマイザを用いて登録されたマルチスケールの高密度特徴画像を予測するために、ディープネットワークを訓練する。
この最適ワープは、画像とラベルのアライメントエラーを最小限にするために使用される。
繰り返し最適化によるエンド・ツー・エンドの識別を暗黙的に行うことにより、学習した特徴は登録とラベル認識であり、ワープ関数は特徴空間における登録対象の局所最小値であることが保証される。
本フレームワークは,ドメイン内のデータセットに対して優れた性能を示し,異方性や強度プロファイルの変化などドメインシフトに依存しない。
テスト時間に任意の変換表現(自由形式から微分同型)をゼロ再学習で切り替えることができる。
エンドツーエンドの機能学習は、特徴の解釈可能性や、推論時に追加のラベル-忠実項を使用するアウト・オブ・ザ・ボックスのプロンプト性も促進する。
関連論文リスト
- Improving Instance Optimization in Deformable Image Registration with Gradient Projection [7.6061804149819885]
変形可能な画像登録は本質的に多目的最適化問題である。
これらの矛盾する目的は、しばしば最適化結果の貧弱につながる。
ディープラーニングの手法は、大規模なデータセット処理の効率化により、最近この領域で人気を博している。
論文 参考訳(メタデータ) (2024-10-21T08:27:13Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - Anatomy-aware and acquisition-agnostic joint registration with SynthMorph [6.017634371712142]
アフィン画像登録は、医用画像解析の基盤となっている。
ディープラーニング(DL)メソッドは、画像対を出力変換にマッピングする関数を学ぶ。
ほとんどのアフィン法は、ユーザが調整したい解剖学に依存しない。つまり、アルゴリズムが画像のすべての構造を考慮すれば、登録は不正確なものになる。
われわれはこれらの欠点をSynthMorphで解決する。これは高速で対称で、微分型で使い易いDLツールで、任意の脳画像の関節アフィン変形性登録を行う。
論文 参考訳(メタデータ) (2023-01-26T18:59:33Z) - Non-iterative Coarse-to-fine Registration based on Single-pass Deep
Cumulative Learning [11.795108660250843]
変形可能な画像登録のための非Iterative Coarse-to-finE登録ネットワーク(NICE-Net)を提案する。
NICE-Netは、非イテレーティブメソッドと同じようなランタイムしか必要とせず、最先端の反復的な深層登録手法より優れている。
論文 参考訳(メタデータ) (2022-06-25T08:34:59Z) - Implicit Optimizer for Diffeomorphic Image Registration [3.1970342304563037]
本稿では,Diffomorphic Image Registration (IDIR) の高速かつ正確なインプシットを提案する。
提案手法を2つの大規模MR脳スキャンデータセットで評価し,提案手法が従来の画像登録手法よりも高速かつ優れた登録結果を提供することを示した。
論文 参考訳(メタデータ) (2022-02-25T05:04:29Z) - GraDIRN: Learning Iterative Gradient Descent-based Energy Minimization
for Deformable Image Registration [9.684786294246749]
変形可能な画像登録を学習するためのGraDIRN(Gradient Descent-based Image Registration Network)を提案する。
GraDIRNは多分解能勾配降下エネルギー最小化に基づいている。
本手法は,学習可能なパラメータを少なく抑えながら,最先端の登録性能を実現することを実証する。
論文 参考訳(メタデータ) (2021-12-07T14:48:31Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
本稿では,教師なし領域適応の簡易な手法について述べる。一方の低周波スペクトルを他方と交換することにより,音源と対象分布の相違を低減できる。
本手法を意味的セグメンテーション(semantic segmentation, 意味的セグメンテーション, 意味的セグメンテーション)で説明する。
以上の結果から,より高度な手法が学習に苦しむデータにおいて,単純な手順であってもニュアンス変動を低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-11T22:20:48Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。