論文の概要: Principles of semantic and functional efficiency in grammatical patterning
- arxiv url: http://arxiv.org/abs/2410.15865v1
- Date: Mon, 21 Oct 2024 10:49:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:13:21.162948
- Title: Principles of semantic and functional efficiency in grammatical patterning
- Title(参考訳): 文法的パターニングにおける意味論的・機能的効率の原理
- Authors: Emily Cheng, Francesca Franzon,
- Abstract要約: 数や性別などの文法的特徴は、人間の言語において2つの中心的な機能を持つ。
数と性別は、数奇性やアニマシーのような有能な意味的属性を符号化するが、予測可能な単語のリンクによる文処理コストをオフロードする。
文法は多種多様な言語にまたがって一貫した組織パターンを示しており、しばしば意味論的基盤に根ざしている。
- 参考スコア(独自算出の注目度): 1.6267479602370545
- License:
- Abstract: Grammatical features such as number and gender serve two central functions in human languages. While they encode salient semantic attributes like numerosity and animacy, they also offload sentence processing cost by predictably linking words together via grammatical agreement. Grammars exhibit consistent organizational patterns across diverse languages, invariably rooted in a semantic foundation, a widely confirmed but still theoretically unexplained phenomenon. To explain the basis of universal grammatical patterns, we unify two fundamental properties of grammar, semantic encoding and agreement-based predictability, into a single information-theoretic objective under cognitive constraints. Our analyses reveal that grammatical organization provably inherits from perceptual attributes, but that grammars empirically prioritize functional goals, promoting efficient language processing over semantic encoding.
- Abstract(参考訳): 数や性別などの文法的特徴は、人間の言語において2つの中心的な機能を持つ。
特異性やアニマシーといった有能な意味的属性を符号化する一方で、文法的な合意を通じて単語を予測的にリンクすることで、文処理コストを削減している。
文法は多種多様な言語にまたがって一貫した組織パターンを示しており、しばしば意味論の基礎に根付いており、広く確認されているが理論上は説明できない現象である。
普遍文法パターンの基盤を説明するために,文法の基本的性質である意味的エンコーディングと合意に基づく予測可能性の2つを,認知的制約下での単一情報理論の対象に統一する。
分析の結果,文法的組織は知覚的属性から確実に受け継がれるが,文法は機能的目標を実証的に優先し,意味的エンコーディングよりも効率的な言語処理を促進することがわかった。
関連論文リスト
- Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
本研究の目的は,トランスフォーマーに基づくニューラルネットワークモデルが語彙意味論を推論するかどうかを検討することである。
考慮される意味的性質は、テリシティ(定性とも組み合わされる)と作用性である。
論文 参考訳(メタデータ) (2023-07-06T10:52:22Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
事前学習された言語モデルは、自然言語処理とプログラム理解の両方において素晴らしい性能を示している。
本研究では,プログラムの構文構造を特定するための,最先端の事前訓練モデルの最初の徹底的なベンチマークを行う。
この結果から,既存のプログラミング言語の事前学習手法の限界が指摘され,構文構造をモデル化することの重要性が示唆された。
論文 参考訳(メタデータ) (2022-10-26T04:47:18Z) - DALL-E 2 Fails to Reliably Capture Common Syntactic Processes [0.0]
我々は,DALL-E2が構成性に関連する8つの文法的現象を捉える能力について分析した。
DALL-E 2は構文に整合した意味を確実に推測できないことを示す。
論文 参考訳(メタデータ) (2022-10-23T23:56:54Z) - A Linguistic Investigation of Machine Learning based Contradiction
Detection Models: An Empirical Analysis and Future Perspectives [0.34998703934432673]
本稿では,2つの自然言語推論データセットについて,その言語的特徴について分析する。
目標は、特に機械学習モデルを理解するのが難しい、構文的および意味的特性を特定することである。
論文 参考訳(メタデータ) (2022-10-19T10:06:03Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
我々は、標準発話とプログラムの訓練例を文法から言い換えて、ゼロショット学習を分析する。
改良された文法,より強力なパラフレーズ,効率的な学習手法を用いて,これらのギャップを埋めることを提案する。
我々のモデルはラベル付きデータゼロの2つの意味解析ベンチマーク(Scholar, Geo)で高い性能を達成する。
論文 参考訳(メタデータ) (2021-10-15T21:41:16Z) - Controlled Evaluation of Grammatical Knowledge in Mandarin Chinese
Language Models [22.57309958548928]
構造的監督が言語モデルの文法的依存の学習能力を向上させるかどうかを検討する。
LSTM、リカレントニューラルネットワーク文法、トランスフォーマー言語モデル、および異なるサイズのデータセットに対する生成解析モデルをトレーニングする。
構造的監督がコンテンツ間のシナティクス状態の表現に役立ち、低データ設定における性能向上に役立つという示唆的な証拠が得られます。
論文 参考訳(メタデータ) (2021-09-22T22:11:30Z) - Constrained Language Models Yield Few-Shot Semantic Parsers [73.50960967598654]
我々は,事前学習された大規模言語モデルの利用を,少ない意味論として検討する。
意味構文解析の目標は、自然言語入力によって構造化された意味表現を生成することである。
言語モデルを用いて、入力を英語に似た制御されたサブ言語にパラフレーズし、対象の意味表現に自動的にマッピングする。
論文 参考訳(メタデータ) (2021-04-18T08:13:06Z) - VLGrammar: Grounded Grammar Induction of Vision and Language [86.88273769411428]
共同学習枠組みにおける視覚と言語の基底文法誘導について検討する。
本稿では,複合確率文脈自由文法(pcfgs)を用いて言語文法と画像文法を同時に誘導する手法であるvlgrammarを提案する。
論文 参考訳(メタデータ) (2021-03-24T04:05:08Z) - Word Frequency Does Not Predict Grammatical Knowledge in Language Models [2.1984302611206537]
言語モデルの精度には,系統的な変化源が存在するかを検討する。
特定の名詞は他の名詞よりも体系的によく理解されており、文法的タスクや異なる言語モデルに対して頑健である。
名詞の文法的特性は,様々な訓練データからほとんど学習されないことが判明した。
論文 参考訳(メタデータ) (2020-10-26T19:51:36Z) - Reinforcement learning of minimalist grammars [0.5862282909017474]
最先端の言語技術は、関連するキーワードに対して音響解析された音声信号をスキャンする。
単語はセマンティックスロットに挿入され、ユーザの意図を解釈する。
メンタルレキシコンは、ユーザとのインタラクション中に認知エージェントによって取得されなければならない。
論文 参考訳(メタデータ) (2020-04-30T14:25:58Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
このようなモチベーションを満たすために,セマンティックス対応推論ネットワーク(SAIN)を提案する。
SAINの推論モジュールは、明示的な文脈的セマンティクスを補完的な入力として、セマンティクス上の一連の推論ステップを可能にする。
本モデルでは,機械読解や自然言語推論など11タスクの大幅な改善を実現している。
論文 参考訳(メタデータ) (2020-04-28T07:24:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。